
Fast, rigorous arbitrary-precision numerics with
ball arithmetic

Fredrik Johansson

Research Institute for Symbolic Computation, Johannes Kepler University Linz
Supported by Austrian Science Fund (FWF) grant Y464-N18

RISC Algorithmic Combinatorics Seminar, March 2013

Numerics in computer algebra

Typical numerical computation

ỹ = (y + ε) = (y + εround + εtrunc)

y ∈ R Exact mathematical quantity
ỹ ∈ Q Computable approximation
ε Absolute error
εround Rounding error from using finite-precision arithmetic

εtrunc Error from truncation of limits (e.g.
∑

∞

n=0 →
∑N

n=0)

Typical end goal

We know that y ∈ Z. It can be determined from ỹ if we can prove
that |ε| < 1/2.

Example: fast computation of the partition function

The Hardy-Ramanujan-Rademacher formula:

p(n) =

N
∑

k=1

√
k Ak(n)

π
√
2

d

dn





sinh π
k

√

2
3

(

n− 1
24

)

√

n− 1
24



+ εtrunc(n,N)

where Ak(n) is a certain sum over complex 2k-th roots of unity

Numerical part of the algorithm

◮ Determine N = O(
√
n) so that |εtrunc| < 1/4

◮ Determine prec(n,N, k) = O(log | term k|) +O(log n) so that
∑ |εround| < 1/4

◮ Evaluate the terms using asymptotically fast arithmetic

Floating-point arithmetic

Numbers are represented as m× 2e, m, e ∈ Z, where m is rounded
to at most b bits.

Pros! Efficient, well-understood numerical model

Cons% Analyzing the error propagation is tedious and difficult, even
for simple algorithms% If we change the algorithm (for example to improve
performance), we must redo the proof% Provable a priori bounds are sometimes much worse than the
actual error, giving poor efficiency

Interval arithmetic

Instead of just computing ỹ ≈ y, compute an interval I such that
y ∈ I is guaranteed.

Pros! Error analysis is mostly needed for “atomic” operations! Errors automatically propagate globally! Can use simple and fast heuristics instead of a priori bounds,
and check a posteriori that the result is correct

Cons% More expensive than floating-point arithmetic% Can give too pessimistic error bounds% Some algorithms that converge in floating-point arithmetic do
not converge in interval arithmetic, and require special care

Two versions of interval arithmetic

Interval (inf-sup) model

I = [a, b], e.g. [3.141592653, 3.141592654]

Ball (mid-rad) model

I = [m− r,m+ r] ≡ m± r, e.g. 3.1415926534 ± 2× 10−10.

The ball model is slightly less accurate and less general. But it is
more efficient at high precision since only m needs full precision.

Already used in: iRRAM (N. Müller), Mathemagix (J. van der
Hoeven)

Goals for developing a new numerical library

Correctness

◮ Use ball model to compute with provably correct error bounds

Features

◮ Complex numbers, special functions

◮ Polynomials, power series, matrices

Performance

◮ Use asymptotically fast algorithms

◮ Minimize overhead (want (1 + ε) of optimal speed)

◮ Support experimenting with different algorithms

Arb

◮ Library for ball interval arithmetic (ARB = Arbitrary-precision
Real Balls)

◮ Code: https://github.com/fredrik-johansson/arb/

◮ Documentation: http://fredrikj.net/arb/

◮ Licensed GPL v2

◮ GMP / FLINT style API

◮ About 30,000 lines of C code (∼ 50% test code)

◮ Started with some proof-of-concept code in April 2012

◮ Current codebase started with a full rewrite in August 2012

◮ Extension of my work on FLINT (and further back, mpmath)

https://github.com/fredrik-johansson/arb/
http://fredrikj.net/arb/

Dependencies

Arb

FLINT

MPFR

MPIR/GMP Low-level arbitrary-precision arithmetic

Arithmetic, polynomials, power se-
ries, matrices, special functions over
Z,Q,Z/pZ,Zp, support and test code

Supporting functions and test
code for floating-point arithmetic

Arithmetic, polynomials, power series,
matrices, special functions over R,C

Feature overview: types

fmpr: floating-point real numbers
RD = Z× 2Z ∪ {−∞,+∞,NaN}. The components are
implemented as FLINT integers, and can grow dynamically.

fmprb: real numbers implemented as balls
RB = {[m− r,m+ r] : m, r ∈ RD, r ≥ 0}

fmpcb: complex numbers implemented as rectangular balls
CB = RB[i]

fmprb poly, fmpcb poly: polynomials over RB, CB

fmprb mat, fmpcb mat: matrices over RB , CB

Feature overview: functionality

Special functions

◮ Elementary functions, Γ(z), ζ(s, a), hypergeometric series

Polynomials

◮ Fast multiplication, division, composition

◮ Fast power series arithmetic, composition, special functions

◮ Fast multipoint evaluation and interpolation

◮ Root isolation

Matrices

◮ Arithmetic, nonsingular solving, determinant, inverse

Algorithms for arithmetic

Floating-point operations by default use correct rounding,
implemented mostly using arithmetic on FLINT integers.

Ball operations are implemented using floating-point arithmetic:
(m1 ± r1)× (m2 ± r2) =
round(m1m2)± (|m1|r2 + |m2|r1 + r1r2 + εround)

All radius operations are done using a fixed, small precision
(30 bits). In many places, we save time by not rounding radii to
the smallest possible bound (but of course always rounding up to
guarantee that the bounds are valid).

Arithmetic performance

Cost of a real multiplication compared to MPFR.

Bits fmpr mul fmprb mul

32 0.6 2.3
128 1.4 2.7
512 0.9 1.4
2048 1.1 1.2
8192 1.2 1.2
32768 1.2 1.2
131072 1.1 1.1
524288 1.0 1.0

MPFR is 20% faster around 104 bits thanks to mulhigh. Most of
the overhead below 1000 bits should be eliminated by a future
rewrite of the fmpr type.

Algorithms for polynomial arithmetic

Multiplication in RB[x] is performed by translating to Z[x], e.g.
1.2345x + 567.89x2 → 123x + 56789x2, with error bounds
calculated separately.

This allows taking advantage of the fast polynomial multiplication
code in FLINT, and appears superior to floating-point FFT.

If the coefficients vary in magnitude, small terms in the output
have poor accuracy when compared to standard O(n2)
multiplication. (A recent algorithm by J. van der Hoeven appears
to solve this problem.)

Other polynomial operations are transformed to multiplication
using various strategies (divide and conquer, Newton iteration, . . .).

Algorithms for elementary functions

Mostly implemented by calling MPFR functions with the midpoint
as input, performing separate error bounding.

Example bounds for error propagation, x = m± r

exp(x) exp(m+ r)− exp(m) = exp(m)(exp(r)− 1)

log(x) log(m)− log(m− r) = log(1 + r/(m− r))

sin(x), cos(x) min(r, 2)

f(x) r supt∈x f
′(t)

Longer-term goal: faster algorithms, especially for low to mid
precision (< 10000 digits).

Computing roots of unity

In some applications (e.g. the Rademacher formula), we need
high-precision values of 2q-th roots of unity (or their real or
imaginary parts)

exp

(

pπi

q

)

= cos

(

pπ

q

)

+ i sin

(

pπ

q

)

Algorithm 1: evaluate the cosine function (Taylor series +
argument reduction techniques, e.g. by calling MPFR)

Algorithm 2: Newton iteration (algebraic numbers).
Asymptotically faster if q is small.

Rigorous root polishing using Newton iteration

We are given a polynomial f and an interval I known to contain a
single root. We can bound C = supt,u∈I

1
2 |f ′′(t)|/|f ′(u)|.

Input: x = [m− r,m+ r] ⊆ I known to contain the root.

Output: x′ = [m′ − r′,m′ + r′] where m′ = m− f(m)/f ′(m) and
r′ = Cr2. If x′ ⊆ I, it is guaranteed to contain the root, and if
r′ < r, we have made progress.

Each iteration roughly doubles the accuracy. Optimal precision
steps: . . . , b/8, b/4, b/2, b bits.

(A version of this also works in complex arithmetic.)

Complex Newton iteration for roots of unity

Algorithm 2A

Evaluate exp (pπi/q) as a root of the polynomial zq + 1.

The power zq can be evaluated in O(log q) steps using binary
exponentiation, so the cost is O(M(b) log q).

The drawback is that we have to use complex arithmetic.

We could also use a cyclotomic polynomial, possibly giving a lower
degree, but this does not appear to give any advantage since we
lose sparsity.

Real Newton iteration for roots of unity

Algorithm 2B

Evaluate cos (pπ/q) as a root of its minimal polynomial.

The minimal polynomial is dense and has degree O(q). Using
Horner’s rule, the cost is O(M(b)q).

This is asymptotically worse than the complex iteration when q
grows, but we avoid the overhead of complex arithmetic. In my
implementation of the partition function, I found it to be faster.

Faster polynomial evaluation using rectangular splitting

Choose m ≈ √
n and write the polynomial as an array with m

columns.

Precompute the table of powers [x2, x3, . . . , xm].

Evaluate inner polynomials (rows) using “scalar” multiplications,
evaluate outer polynomial using Horner’s rule.

P (x) =
1 + 1x + 2x2

+ 3x3 + 4x4 + 5x5

+ 6x6 + 7x7 + 8x8

P (x) = ((8x2 + 7x+ 6)x3 + (5x2 + 4x+ 3))x3 + (2x2 + 1x+ 1)

Analysis of rectangular splitting evaluation

Precision b bits, degree n, coefficients c ≤ b bits

Horner’s rule

O(nM(b)) = O(nb1+ε)

Rectangular splitting

Nonscalar multiplications: O(n1/2M(b))
Scalar multiplications: O(nM(b, c)) ≈ O(nb)

The improvement is theoretically at most bε, but in practice the
nonscalar multiplications dominate if c is small.

Note: we can reuse the table of powers to compute P (x), P ′(x)
faster simultaneously (useful for Newton iteration).

Rectangular splitting, historical notes

◮ First described by Paterson-Stockmeyer (1973)

◮ Transposed version for hypergeometric series (where cn+1/cn
is small is small) given by D. M. Smith (1989) (“concurrent
summation”)

◮ The same idea is used in the Brent-Kung power series
composition algorithm (1978)

◮ Further analyzed in Brent and Zimmermann, Modern
Computer Arithmetic (2011)

Comparison of algorithms for roots of unity

Precision = 1000 digits

10 20 30 40 50 60 70
Denominator

0.1

0.2

0.3

0.4

0.5

Time (ms)

cosine
minpoly+horner / cosine
minpoly+rectangular
complex

Comparison of algorithms for roots of unity

Precision = 10000 digits

50 100 150 200 250 300 350
Denominator

2

4

6

8

10

Time (ms)

cosine
minpoly+horner / cosine
minpoly+rectangular
complex

Comparison of algorithms for roots of unity

Precision = 100000 digits

200 400 600 800 1000 1200
Denominator

100

200

300

400

Time (ms)

cosine
minpoly+horner / cosine
minpoly+rectangular
complex

Special functions: Hurwitz zeta function

Arb provides the Hurwitz zeta function ζ(s, a) =
∑

∞

k=0
1

(a+k)s and
derivatives with respect to s.

Supports any s, a ∈ C (analytic continuation), fast simultaneous
computation of ζ(s, a), ζ ′(s, a), . . . ζ(n)(s, a), with rigorous error
bounds.

Special cases

Riemann zeta function ζ(s) = ζ(s, 1), Dirichlet L-series,
polygamma functions ψ(m)(z), polylogarithm Lis(z), Bernoulli
polynomials (not necessarily the best way to compute these
functions).

Euler-Maclaurin summation

U
∑

k=0

f(k) =

N−1
∑

k=0

f(k) +

∫ U

N
f(t)dt+

1

2
(f(N) + f(U))

+

M
∑

k=1

B2k

(2k)!

(

f (2k−1)(U)− f (2k−1)(N)
)

−
∫ U

N

B̃2M (t)

(2M)!
f (2M)(t)dt

◮ Hurwitz zeta: f(k) = (a+ k)−s, U = ∞
◮ Must have ℜ(a+N) > 0,ℜ(s+ 2M − 1) > 0

◮ Rigorous error bounds from the tail integral

Derivatives

In the Euler-Maclaurin summation formula, put a formal power
series s+ x ∈ C[[x]] in place of s ∈ C.

This is conceptually much simpler than deriving explicit recursion
formulas or nested sums for the derivatives (some work is still
needed to bound errors).

We also see where fast polynomial arithmetic can be exploited.

Computing Stieltjes (generalized Euler) constants

ζ(s, a) =
1

s− 1
+

∞
∑

n=0

(−1)n

n!
γn(a) (s− 1)n

γn = γn(1), γ0 = γ ≈ 0.577216

Computing (γ0, . . . γ1000), 1000 significant digits: 14 seconds
Computing (γ0, . . . γ5000), 5000 significant digits: 40 minutes

≈ 1000 times faster than Mathematica’s StieltjesGamma[],
mpmath’s stieltjes()

Previous work by R. Kreminski: γ0, . . . γ10000, isolated larger values
(numerical integration)

Fast evaluation of holonomic sequences

Suppose (ck)
∞

k=0 is a holonomic sequence annihilated by an
operator L ∈ R[k][Sk]. How fast can we compute cn as n grows?

Naively: O(n) arithmetic operations.

Better methods: based on the matrix form








ci+1

ci+2

. . .
ci+r









=M(i)









ci
ci+1

. . .
ci+r−1









where M ∈ R[k]r×r is the companion matrix of L (possibly after
factoring out a denominator polynomial).

C-finite case: matrix exponentiation

If M is constant, we have

n
∏

k=1

M(k) =Mn

This can be evaluated using O(log n) arithmetic operations, which
is quasi-optimal.

Example: Fibonacci numbers.

[

Fn

Fn+1

]

=

[

0 1
1 1

]n [
F0

F1

]

Small coefficients: binary splitting

If R = Z (for example), the entries in M(k) have size O(log k)
bits.

Evaluating
∏

kM(k) using divide-and-conquer gives a
quasi-optimal time complexity of O(n1+ε).

Example: n! =
∏n

k=1 k

8! = ((1 × 2)× (3× 4)) × ((5× 6)× (7× 8))

Binary splitting support

Common case: rational hypergeometric series

∞
∑

k=0

T (k), T (k) =
P (k)

Q(k)
T (k − 1)

where P,Q ∈ Z[k].

Given P,Q and a bound 2−b for the truncation error, Arb can
evaluate

∑

∞

k=0 T (k) with automatic error bounding. This is used
for computing constants: π, e, log 2, log 10, ζ(3),K, . . .

Also some code for binary splitting evaluation of holonomic
sequences (no truncation bounds).

Binary splitting with rounding

To get a precision of b bits, we often need O(b) terms, which
means that the final result of binary splitting with exact arithmetic
has O(b log b) bits.

We can improve performance by using exact arithmetic until the
numbers grow to b bits, and then keep rounding them to b bits.

In Arb, this can be accomplished by simply using Arb numbers
throughout.

Binary splitting for power series

Example: fast simultaneous computation of ζ(3), ζ(5), ζ(7), . . .

∞
∑

i=1

ζ(2i+ 1)xi =
∞
∑

k=1

1

k3(1− x/k2)

=

∞
∑

k=1

(−1)k+1

k3
(2k
k

)

(

1

2
+

2

1− x/k2

) k−1
∏

j=1

(1− x/j2).

Binary splitting over Z[x] balances both the polynomial degrees
and the bit sizes (in the end we perform one power series division)

We can both truncate the polynomials and round the coefficients.
Rounding improves speed by ≈ 2x in practice.

General case: fast multipoint evaluation

Suppose the coefficients of L ∈ R[k][Sk] do not have small bit
sizes (e.g. they are real numbers with the same precision as the
final result). Assume n = m2.

1. Use binary splitting to generate the polynomial matrix

Pm =M(k +m− 1) · · ·M(k + 1)M(k) ∈ R[k]r×r

2. Evaluate Pm(k) for k = 0,m, 2m, 3m, . . . , (m− 1)m

3. Compute Pm((m− 1)m) · · ·Pm(2m)Pm(m)Pm(0).

Step 2 can be done using fast multipoint evaluation. The cost is
O(n1/2 log2 n) arithmetic operations (we must also store
O(n1/2 log n) coefficients).

Fast multipoint evaluation in modular arithmetic

Evaluating (n− 1)! mod n using fast multipoint evaluation in
FLINT.

n Naive Fast

105 0.89 ms 0.52 ms
106 9.8 ms 3.1 ms
107 110 ms 18 ms
108 1.2 s 0.12 s
109 12 s 0.71 s
1010 151 s 3.5 s
1011 1709 s 15 s
1012 5 h (est.) 70 s
1013 50 h (est.) 307 s
1014 500 h (est.) 1282 s

Numerical fast multipoint evaluation

We consider evaluating the rising factorial

xn = x(x+ 1)(x + 2) · · · (x+ n− 1)

where x is a b-bit real or complex number and the final precision
also is b bits.

Naive algorithm

O(nM(b))

Fast multipoint evaluation

O(n1/2 log2 nM(b))

Numerical disaster

Relative error when evaluating xn at precision b = 10000:

n Naive Fast

101 2−10000+3 2−10000+6

102 2−10000+5 2−10000+73

103 2−10000+5 2−10000+738

104 2−10000+6 2−10000+3870

105 2−10000+5 2−10000+1238528

Empirically, we lose ≈ O(n) digits of accuracy when evaluating xn.
This happens even if the slow O(n2) polynomial multiplication
algorithm is used.

In the numerical case, fast multipoint evaluation only seems useful
when b grows at least as fast as n.

Also noted in earlier work

S. Köhler and M. Ziegler, “On the Stability of Fast Polynomial
Arithmetic” (2008):

We thus have shown that, in spite of its name, fast
polynomial arithmetic is as slow as the naive algorithms:
for practically relevant instances over real numbers, due
to the increased intermediate precision required for
reasonable output accuracy. Surprisingly (at least to us),
these instabilities are not so much due to polynomial
division with remainder alone; it is the multiplication of
several real polynomials which leads to ill-conditioned
input to the polynomial division.

The big open challenge thus consists in devising some
variant of fast polynomial arithmetic which is numerically
sufficiently mild to yield a net benefit in running time
over the naive O(n2) approach.

Eight-point algorithm for rising factorials

Process eight factors at a time using the following formula
(Crandall and Pomerance, 2005)

x(x+1) · · · (x+7) = (28+98x+63x2 +14x3+x4)2−16(7+2x)2

Instead of 7 full-precision multiplications, we only need 3 squarings,
1 multiplication, and several “scalar” operations.

At high precision, this gives a constant factor speedup (≈ 2x)

Rising factorials using rectangular splitting

We can process m factors at a time: use binary splitting over Z[t]
to expand (the unsigned Stirling numbers of first kind)

P (t) = t(t+ 1)(t+ 2) · · · (t+m− 1) =

m
∑

k=0

[m

k

]

tk

and use rectangular splitting for each polynomial
xn = P (x)P (x +m)P (x+ 2m) · · ·

Nonscalar multiplications: O((n/m)m1/2 + n/m)
If m ∼ nα this goes to O(n1/2) as α→ 1. However, larger m must
be balanced against the larger coefficients.

Smith’s algorithm

D. M. Smith (2001)

One group: A = (x+ k)(x+ k + 1)(x + k + 2)(x+ k + 3)

Next group B = (x+ k + 4)(x+ k + 5)(x + k + 6)(x+ k + 7)

Then B −A =
16x3+24(2k+7)x2+8(6k2+42k+79)x+8(2k+7)(k2 +7k+15)

If we precompute x2 and x3, B = A+ (B −A) can be evaluated
using only scalar operations

Constant factor improvement: n→ n/4 nonscalar multiplications

Generalizing Smith’s method

For a fixed parameter m, write

∆m(x, k) = (x+ k +m)m − (x+ k)m ∈ Z[k][x]

We choose m according to the input and generate this polynomial
dynamically. Taking m ∼ n1/2 allows a reduction to O(n1/2)
nonscalar multiplications. (There is also a cost due to the growth
of the scalars.)

The coefficients can be written in closed form:

∆m(x, k) =

m−1
∑

v=0

xv
m−v−1
∑

i=0

ki Cm(v, i)

Cm(v, i) =

m−v
∑

j=i+1

mj−i

[

m

v + j

](

v + j

v

)(

j

i

)

Comparison of rising factorial algorithms

101 102 103 104 105 106

n (prec = 4n bits)

10-1

100

101

102

S
p
e
e
d
u
p

simple
eight
rectangular
delta
multipoint

Analysis of rising factorial algorithms

◮ The rectangular splitting algorithms (“delta”, “rectangular”)
are best in practice

◮ Fast multipoint evaluation can beat the naive algorithm at
very high precision, but in practice struggles to compete with
the rectangular splitting algorithms

Evaluating the gamma function

The gamma function is computed using the asymptotic Stirling
series

log Γ(z) =

(

z − 1

2

)

log z−z+log 2π

2
+

n−1
∑

k=1

B2k

2k(2k − 1)z2k−1
+R(n, z)

We can make R(n, z) arbitrarily small by setting z large enough,
using Γ(x) = Γ(x+ r)/(x(x + 1)(x + 2) · · · (x+ r − 1)).

Optimization opportunity

A larger r allows us to use a smaller n, and a fast rising factorial
makes a larger r cheap.

Timings, real gamma function

Evaluating Γ(x), x =
√
2

Digits Pari/GP MPFR Mathematica Arb

30 0.000024 0.000090 0.000070 0.000043

100 0.000068 0.00036 0.00020 0.00011

300 0.00039 0.0028 0.00080 0.00032

1000 0.0046 0.046 0.058 0.0021

3000 0.12 (6.5) 1.2 0.76 0.017 (0.080)

10000 1.9 (233) 60 13 0.21 (1.3)

30000 13 (6154) 2680 186 2.4 (19)

Timings in seconds for repeated evaluation (first evaluation)

Timings, complex gamma function

Evaluating Γ(z), z =
√
2 + i

√
3

Digits Pari/GP mpmath Mathematica Arb

30 0.000064 0.00017 0.00021 0.00012

100 0.00018 0.00043 0.00052 0.00027

300 0.0010 0.0023 0.0022 0.00081

1000 0.013 0.026 0.020 0.0055

3000 0.19 (6.5) 0.36 (3.6) 0.31 (1.7) 0.049 (0.11)

10000 2.9 (235) 6.4 (95) 5.8 (44) 0.67 (1.7)

30000 38 (6030) 92 (3030) 80 (887) 8.5 (25)

Timings in seconds for repeated evaluation (first evaluation)

Generalizing to arbitrary holonomic sequences

Let ck(x) be a holonomic sequence with annihilator
L ∈ R[x][k][Sk] and companion matrix M(x, k) ∈ R[x][k]r×r.

Let a be an element of some R-algebra A. Then we can evaluate
cn(a) using O(n1/2) nonscalar multiplications A×A→ A and
O(n) scalar multiplications A×R→ A.

∆m =

m−1
∏

i=0

M(x, k +m+ i)−
m−1
∏

i=0

M(x, k + i) ∈ R[x][k]r×r

Choose m ∼ n1/2, precompute a, a2, . . . , amd, d = degx L.

Sequences with multiple parameters

Let ck(x1, . . . , xh), L ∈ R[x1, . . . , xh][k][Sk], di = degxi
L ≤ d.

Then the entries of ∆m are R[k]-linear combinations of
x
e1,j
1 · · · xeh,jh , 0 ≤ ei,j ≤ mdi ≤ md.

h m Nonscalar: O(mh + n/m) Scalar: O((n/m)mh)

2 n1/3 n0.666 n1.333

3 n1/4 n0.75 n1.5

4 n1/5 n0.8 n1.6

For h > 1, we can still reduce the number of nonscalar
multiplications, but have to do asymptotically more scalar
multiplications than by naive evaluation.

Taking m constant might still give a constant factor speedup.

Possible application: hypergeometric functions

We can numerically evaluate pFq(a1 . . . ap, b1 . . . bq, z) where
ai, bi, z ∈ Q(s) and s is transcendental, with a reduced number of
full-precision multiplications (Paterson-Stockmeyer, Smith: z
transcendental).

P. Borwein (1987): noticed that fast multipoint evaluation is
applicable (costing O(b1/2 log2 b) arithmetic operations for O(2−b)
error).

Unlike Borwein’s method, we can expect to see speedups in
practice, even at relatively modest precision (e.g. 10000 digits),
and we avoid the numerical instability.

Gamma without Bernoulli numbers

Γ(s) = N s
∞
∑

k=0

(−1)kNk

k!(s+ k)
+O(Ne−N)

The partial sums are holonomic of order r = 2.

Digits Naive ∆32 Stirling (first) Stirling (cached)

30000 345 s 52 s 33 s 5.5 s
100000 7451 s 425 s 602 s 72 s

Note: preliminary Sage implementation, 32-bit computer.

Stirling’s series is still the winner...

...at least with Bernoulli numbers cached. The hypergeometric
series shows some promise at least as an alternative in some
situations.

The end

