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1 Introduction

Arb 1 is a new open source C library for provably correct arbitrary-precision numerics, extending FLINT [3]
(which provides fast arithmetic over various exact rings) to the real and complex numbers. Following
the example of iRRAM [7] and Mathemagix [13], Arb performs automatic error propagation using ball
arithmetic [12] (not to be confused with heuristic significance arithmetic as used e.g. in Mathematica [9]).
This gives performance close to floating-point arithmetic such as provided by MPFR [2] while avoiding the
cost at high precision of endpoint-based interval arithmetic as provided for instance by MPFI [8].

One of our motivations for developing a new library has been to provide a low-level, low-overhead inter-
face, and our implementation differs from others in some technical aspects. Arb also provides fast polyno-
mial arithmetic, to our knowledge only available in Mathemagix and without error control in MPFRCX [1],
as well as matrix arithmetic. Finally, Arb implements some special functions that have been absent from
arbitrary-precision interval software, with performance that compares favorably to available nonrigorous
implementations. The presentation covers implementation details and shows some benchmarks.

2 Feature overview

Arb provides the following types:

• fmpr t: floating-point real numbers RD = Z× 2Z ∪ {−∞,+∞,NaN}
• fmprb t: real numbers implemented as balls RB = {[m− r,m+ r] : m, r ∈ RD, r ≥ 0}
• fmpcb t: complex numbers in rectangular form CB = RB [i]

• fmprb poly t, fmpcb poly t: polynomials (and truncated power series) over RB, CB

• fmprb mat t, fmpcb mat t: matrices over RB, CB

Each type has a set of associated methods for memory management, conversions, arithmetic and spe-
cial functions, with an interface resembling that of FLINT. For example, the power series multiplication
a← b× c mod xn with rounding to prec bits, where a, b, c are of type fmprb poly t, is written as:

fmprb_poly_mullow(a, b, c, n, prec)

Polynomial methods have corresponding “underscore” versions that act directly on coefficient arrays, re-
ducing overhead and giving more control over memory allocation and copying (like the mpn layer of GMP):

_fmprb_poly_mullow(a->coeffs, b->coeffs, b->length, c->coeffs, c->length, n, prec)
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3 Representation of numbers

Arb does not directly base its arithmetic on MPFR (but does call MPFR for a few operations, and the
test suite extensively verifies correctness against MPFR). MPFR attaches a precision to each variable, and
allocates memory for a full-precision number even if only a few bits are used. In Arb, the precision is
always passed as an argument to each function; the components of an fmpr t are FLINT integers, and can
grow dynamically. A mantissa or exponent with at most 62 bits (30 bits on a 32-bit system) is particularly
efficient, as it takes up a single word in the fmpr t struct without allocating memory on the heap.

We have found this approach convenient for mixed-precision algorithms and particularly valuable for
computations involving integer coefficients of variable size (such as binary splitting and various polynomial
operations). The same type also works well for low-precision arithmetic such as error bound calculations.
The drawback is some overhead at precisions up to a few hundred digits, although experiments suggest
that this overhead could be reduced with further implementation effort.

Bits mpfr mul fmpr mul fmprb mul

32 1.0 0.6 2.3
128 1.0 1.4 2.7
512 1.0 0.9 1.4
2048 1.0 1.1 1.2
8192 1.0 1.2 1.2
32768 1.0 1.2 1.2
131072 1.0 1.1 1.1
524288 1.0 1.0 1.0

Table 1: Time relative to MPFR of floating-point and ball multiplication. The difference
below approximately 1000 bits results from implementation overhead, and the 10% − 20%
difference around 103 - 105 bits is due to MPFR using the mulhigh algorithm.

An fmprb t consists of a midpoint and a radius, both of type fmpr t. Radius operations use a predefined
precision (30 bits). Midpoint arithmetic is always carried out at the requested working precision. It would
be more efficient to round midpoints to the accuracy indicated by the radius, though such a normalization
naturally can be performed explicitly, and the present convention is sometimes useful for detecting when
the computed error bound greatly overshoots the actual numerical error.

Complex numbers are represented as pairs of real balls. This seems preferable to a complex midpoint
with a single radius, for reasons of convenience, and it is frequently useful to track whether either the real
or imaginary part is exact. Similarly, polynomials and matrices are represented as arrays of coefficients to
maximize flexibility. Where a different data order is required, temporary copies are relatively cheap since
the base fmpr t type takes up only two words and usually only needs to be copied shallowly.

4 Special functions

Except for some special cases, the elementary functions in Arb call the MPFR implementations of exp,
log, sin, cos and atan (our future plan is to develop faster implementations for precisions up to a few
thousand digits), using function derivatives to bound propagated errors. Care has been taken to ensure
numerically satisfactory behavior on the whole complex plane, for example when evaluating tan(x+yi) for
large |y|. Extremely large numbers are handled specially: we allow arbitrary-precision exponents, and we
restrict the internal working precision allowed for argument reduction to a small multiple of the requested
precision. For example, an attempt to evaluate cos(210

10

) quickly returns a crude bounding interval (e.g.
[−1, 1]) unless the precision is set in the hundreds of millions of digits. This makes worst-case evaluation
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time at a given precision predictable and avoids unnecessary stalls caused by tiny terms that might not
even contribute to the final result, particularly aiding “black-box” use in computer algebra settings.

Interval software has historically been limited to the elementary functions and some special functions
of a real variable, while software with good support for special functions (e.g. [10], [5]) has not guaranteed
correctness. We wish to improve this situation. As of the current version, Arb provides Bernoulli numbers,
the Hurwitz zeta function ζ(s, a) and its derivatives with respect to s for complex s and a, and the gamma
and digamma functions for real and complex arguments. The implementations are tuned for different sizes
and precisions, incorporating many optimizations. Arb also contains code for binary splitting evaluation of
generic rational hypergeometric series with automatic error bounding, used for evaluation of mathematical
constants, as well as code for rigorous polynomial root refinement, used for some algebraic numbers.

Evaluation Digits MPFR 3.1.1 Pari/GP 2.5.3 Mathematica 8.0 Arb

A: γ (Euler’s constant) 106 93 s > 1 h 30 s 18 s
B: cos(π/31) 105 6.1 s 42 12 s 0.48 s
C: 3F2(

1

2
, 1
3
; 1
4
, 1
5
, 1
6
; 1
7
) 105 n/a n/a 1396 s 0.45 s

D: Γ(
√
2) 104 60 s 1.9 (233) s 13 s 0.21 (1.3) s

E: Γ(
√
2 + i

√
3) 104 n/a 2.9 (235) s 5.8 (44) s 0.67 (1.7) s

F: ζ(1/2 + 1000i) 104 n/a 24 (1571) s 672 s 22 (25) s
G: ζ(1 + 2i, 3 + 4i) 103 n/a n/a 2.4 s 0.38 s

Table 2: Special function timings, measuring repeated calls with the initial call inside
parentheses. Algorithms in Arb: A) binary splitting B) minimal polynomial root refinement
C) generic binary splitting D-E) Stirling’s series F-G) Euler-Maclaurin summation.

5 Polynomials and power series

Polynomial operations are implemented in an asymptotically fast way by reducing to multiplication using
standard techniques such as Newton iteration for division, series logarithm and series exponential, divide-
and-conquer for composition [4], rectangular splitting for power series composition, and product trees for
fast multipoint evaluation and interpolation. We have implemented three algorithms for multiplication
in R[x]: classical, sloppy, and blockwise. The latter two translate to Z[x] and call FLINT (which uses
classical, Karatsuba, Kronecker substitution, and Schönhage-Strassen FFT multiplication).

The sloppy algorithm cuts off the coefficients of each input polynomial prec bits below the top bit
of the polynomial as a whole, performs a single multiplication over Z[x], and bounds errors using max
norms. This is fast, and numerically satisfactory if all coefficients have the same magnitude, but not used
by default due to the poor numerical stability for polynomials with coefficients of varying magnitude.

The blockwise algorithm splits the input polynomials into blocks of similarly-sized coefficients and
multiplies each pair of blocks exactly in Z[x]. In the worst case, this degenerates to multiplication of 1× 1
blocks equivalent to classical multiplication. In the typical case, it only performs slightly worse than the
sloppy multiplication. Accurate per-coefficient error bounds are computed using an O(n2) loop running
over exponents. The algorithm could be improved further using scaling and by discarding parts of the
inputs that do not contribute to the result, as discussed in [11].

We illustrate the importance of polynomial arithmetic that is both fast and numerically stable. Letting
ξ(s) = (s−1)π−s/2Γ

(

1 + 1

2
s
)

ζ(s), Li’s criterion [6] states that the Riemann hypothesis is equivalent to the
positivity for all n > 0 of the coefficients λn defined by log ξ (z/(z − 1)) =

∑

∞

n=0
λnz

n. We prove positivity
of the first 10,000 coefficients by evaluation. This requires derivatives of ζ(s), a series logarithm, derivatives
of log Γ(s), and a series composition with z/(z−1). In this example, the final composition catastrophically
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magnifies the error bounds if sloppy multiplication is used, making a precision of nearly 10n bits necessary.
With classical multiplication, about 1.3n bits suffice, speeding up the the zeta function evaluation, but
the subsequent power series operations now dominate. Blockwise multiplication allows using the same
precision as with classical multiplication, and the power series operations only take a fraction of the time.

Sloppy Classical Blockwise

Working precision 100000 bits 13000 bits 13000 bits

Zeta 147180 s 1242 s 1272 s
Logarithm 56 s 2760 s 8.3 s
Gamma 781 s 3.4 s 3.4 s
Composition 1994 s 7971 s 185 s

Total 150011 s 11976 s 1469 s

Table 3: Precisions and timings for computing the Li coefficients λn up to n = 10000 with
correctly determined signs, using three different multiplication algorithms.
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