Chapter 4

Computing with real numbers

Fredrik JOHANSSON

Computing with real and complex numbers is a hard problem: there are
fundamental limits related to computability as well as practical difficulties
concerning efficiency and the management of numerical approximation
errors. In this chapter, we review the central concepts and problems in this
domain and discuss tools (such as different representations of numbers) that
help overcome the practical difficulties.

4.1 Introduction

Computers were invented for crunching numbers, yet often seem to
have a rather poor grasp of them. A quick example in SageMath illustrates
this:

sage: sqrt(2.0)/2.0 == 1.0/sqrt(2.0)
False

sage: sqgrt(2.0)/2.0; 1.0/sqrt(2.0)
0.707106781186548

0.707106781186547

The failure of the identity V2/2=1/2 results, of course, from using
approximate floating-point arithmetic instead of exact real numbers. The
cause of a difference in the 15th digit in this example can lead to a complete
breakdown in another situation, as shown in Figure 4.1. Why do we allow
such crimes against mathematics? There are valid excuses:

1. True real numbers are inherently not computable objects. A real
number “selected at random” (perhaps 2.65323025327443 . .., as a

2 Chapter 4. Exemple

0 5 10 15 20

Figure 4.1 — Black: graph of the hypergeometric function 1F;(—50,3, x) on 0 <
x < 20. Gray: erroneous graph computed by scipy. special.hyplfl (gray),
due to floating-point error.

concrete example!) contains an infinite amount of information and
cannot be stored on a physical computer.

2. If we limit ourselves to “reasonable” real numbers with finite de-
scriptions, say v/2 + 1/3, there are still operations that are out of
reach for algorithms.

3. Even when we do have algorithms, the computational cost or im-
plementation difficulty for an exact solution is often prohibitive.

There is, accordingly, a very real need for numerical approximations,
with all their very real problems.

In this text, we will not dive deeply into the failure modes of floating-
point arithmetic and the effects of approximation errors in numerical algo-
rithms. Instead, we will survey the inherent difficulties in computing with
real numbers. Some problems are genuinely hard, others are readily solved
with the right tools.

Tools that permit computing with real numbers more reliably than
the usual floating-point arithmetic include arbitrary-precision arithmetic,
interval arithmetic, and different lazy and symbolic representations. Each
comes with its own pros and cons.

We note that SageMath provides several models of real numbers be-
sides the usual floating-point arithmetic; we will show more examples
below, and we encourage the reader to experiment with the examples. A
good complement to this text is the free book Computational Mathematics
with SageMath which includes several sections on numerical methods. [1]

4.2 Algebraic numbers

In a general sense, we can define computing with some mathematical
structure S to imply that we have a way to represent elements of S in digital
form, and algorithms to carry out operations on the elements of S in this

4.2. Algebraic numbers 3

representation. A structure or operation that admits computing in this
sense is called computable or effective. We will use the word effective and
reserve computable for a more technical notion to be introduced later.

Theorem 1. The ring of integers Z, with the ring operations {+, —, x } and
comparison predicates {=, #, <, <, >, >}, is effective.

The standard way to represent elements of Z is using strings of digits
(for example decimal digits, or more commonly binary digits or 64-bit
words on a computer). The algorithms for the ring operations can be taken
to be the usual digit-by-digit “schoolbook” methods, ! implemented in any
conventional programming language or on a Turing machine if we prefer
to be formal. Of course, many operations besides those listed in Theorem 1
are also effective: the absolute value | - |, greatest common divisor, and
factoring into prime numbers, to name a few.

There is a simple corollary of Theorem 1:

Theorem 2. The field of rational numbers Q (with the four field operations
{+, —, %, / } and comparison predicates) is effective.

With much more difficulty, it can be shown that the same result holds
for algebraic numbers.

Theorem 3. The field Q, consisting of all the complex numbers x that are solutions
to algebraic equations f(x) = 0 with f € Q[x| (f not identically zero), is
effective with respect to field operations, absolute value, complex conjugation, and
comparison predicates.

By extension, various structures such as polynomials and matrices
over algebraic numbers are also effective.

Let us return to the example in the introduction. SageMath includes an
implementation of the field of algebraic numbers Q, where we can perform
the same calculation exactly:

sage: x = QQbar (2)
sage: sqrt(x)/2 == 1/sqrt (x)
True

The field Q is not quite R or C — we can only do so much mathematics
without 7t or e* — but we can do quite a bit. Much computational geometry
can be done entirely with algebraic numbers.

1. There are faster algorithms than the “schoolbook” methods, discussed briefly in
section 4.4.4, but the distinction is unimportant for the present discussion.

4 Chapter 4. Exemple

The drawback of exact algebraic numbers is computational cost. Eval-
uating 1 + 1 in SageMath’s QQbar takes thousands of CPU cycles although
the CPU can do several single-digit additions per cycle. Even ignoring such
constant factor overhead, exact algorithms sometimes have poor asymp-
totic complexity, even for seemingly simple tasks. For example, many
algorithms depend on having an explicit polynomial f over Q that annihi-
lates the given number, and this polynomial can be huge.

Example 1. Let x = /2 ++/3 + ...+ /PN be the sum of the square roots of
the first N prime numbers. Then the minimal annihilating polynomial of x over Q
has degree 2N.

We can stress-test SageMath’s QQbar as follows:

sage: x = QQbar (sum(sqgrt (nth_prime (n+l)) for n in range(6)))
sage: %time x - (x - 1) - ==

CPU times: user 8.98 s, sys: 14.4 ms, total: 9 s
Wall time: 9.17 s
True

With range (7) instead of range (6), it takes a long time! In this
case, there are better ways to do the calculation: for example, we could
use SageMath'’s symbolic ring (SR) instead of QQbar. In other cases, the
symbolic ring might be worse or might not even be applicable. ?

Despite such examples, the perils of exact arithmetic should not be
exaggerated. It is too easy to take a textbook algorithm (say, Gaussian elim-
ination), find that is slow when run in exact arithmetic, and conclude that
exact computing is hopeless. State of the art methods designed specifically
for exact arithmetic can have much better performance.

4.2.1 Logic and decidability

Algebraic computation gets more complicated when we introduce
logical formulas with quantifiers. A more appropriate term for effective
in this context is decidable. Hilbert’s tenth problem famously asks the
following question about integers: is there an algorithm that always decides
whether a given Diophantine equation is solvable? Matiyasevich gave a

2. This particular example happens to be trivial using the symbolic ring because the
terms are sums of simple radicals. General algebraic numbers are not expressible in terms
of radicals, or may have complicated nested forms when expressed as such.

3. As a check, compare random_matrix (QQ, n, n).det () (highly optimized)
versus random_matrix (QQ, n, n).det (algorithm="generic") in SageMath for
different .

4.3. Real numbers 5

negative answer in 1970, building on previous work by Robinson, Davis
and Putnam.

Theorem 4 (Corollary of the M-R-D-P theorem). There exists a polynomial
f € Z|x1, ..., xy) such that no algorithm can decide whether f(xq,...,x,) =0
has a solution with x1,...,x, € Z.

Diophantine equations are essentially general enough to describe arbi-
trary Turing machines, and therefore questions about integers can run into
the fundamental limits of computability such as Turing’s halting problem
and Godel’s incompleteness theorem.

On the other hand, there are also some strong positive results, and
some decision problems actually become simpler when working over an
algebraically closed field such as Q instead of the smaller sets Z or Q.

Denote by R = QN R the field of real algebraic numbers. It turns
out that we can decide, for example, whether f(x1,...,x,) > 0holds for
all x1,...,x, € R, for any given polynomial f € R[xy,...,x,]. An even
stronger statement is Tarski’s theorem about quantifier elimination, proved
in the 1950s, which we only paraphrase here.

Theorem 5 (Tarski). Any formula in first-order logic (using boolean operations
and quantifiers ¥, 3) involving n variables x1, . . ., x, and polynomial equalities
and inequalities for these variables over R, is decidable.

A consequence of this theorem is that propositions in Euclidean geom-
etry are effectively decidable (when properly formalized).

Tarski’s original algorithm for quantifier elimination has Lovecraftian *
computational complexity. In 1975, Collins published the method of cylin-
drical algebraic decomposition (CAD) which solves the problem in a practi-
cal sense, having worst-case complexity that is “only” doubly exponential,
22°" in the number of variables. Exact computational geometry algorithms
such as CAD are now widely available in computer algebra systems and
used in applications such as motion planning for robotics.

4.3 Real numbers

The defining feature of the real numbers R is the ability to take limits,
which in turn allows us to define constants and functions such as 7t and
e* as well as the operations of calculus such as differentiation, integration,
and summation of infinite series, fundamental to applied mathematics.

4. Of such cosmic horror that it belongs in a story by H. P. Lovecraft. The actual
technical term for the complexity class of Tarski’s algorithm is non-elementary.

6 Chapter 4. Exemple

For a Cauchy sequence ay, a1, ... with a, € Q, we havelim,, , 4, € R,
and indeed IR can be defined formally as the set of equivalence classes of
rational Cauchy sequences. Just slightly less formally, we can define R in
terms of infinite strings of digits, say 3.141. .. (or rather equivalence classes
of such strings, since for example 0.999... = 1.000...).

Of course, we cannot store an infinite sequence ag, a1, . .. explicitly
on a computer, and in general we cannot even do so implicitly. Cantor’s
theorem on the uncountability of R implies that almost all real numbers
cannot even be defined with a finite amount of information, so the field R
is clearly not effective. In all contexts where we talk about computing with
R, we necessarily mean computing with some restricted and countable
subsets of R, suchas R = QN R or special sets of transcendental numbers
such as the extension field R(7, e,log(2)) of the real algebraic numbers.

4.3.1 Computable real numbers

One common way to describe real numbers in an effective way is to
represent Cauchy sequences algorithmically, essentially as a form of lazy
evaluation. This leads to the formal notion of a computable real number.

Definition 4.3.1. A computable real number is a real number x such that there
exists a program (in the sense of a Turing machine) which, given any precision
p € Z, outputs a rational number X satisfying |x — x| < 27F.

More generally, we can define computable functions in the same way.

Definition 4.3.2. A computable function (on IR) is a function f such that there
exists a program which, given p € Z and a program for a computable number x,
outputs a rational number y satisfying |f(x) —y] < 27F.

The definition is easily extended to complex variables and several
variables. Computable numbers can be viewed as the special case of com-
putable functions with an empty list of inputs. It is easy to see that com-
putable functions can be composed.

Example 2. Addition is a computable function: given the precision parameter
p € Z and programs for two real numbers x and y, it suffices to approximate both
x and y with error 27P~1 (by calling the respective programs with precision p + 1)
and add the approximations.

The computable numbers form a countable subset of R. All algebraic
numbers and functions are computable, but the computable numbers and
functions also include familiar transcendentals like 7r and e*. For example,

4.3. Real numbers 7

7T can be approximated by successive truncations of the infinite series
m=4Y,(-1)"/(2n + 1), and similarly e by its Taylor series. Not all
simple functions are computable: we will discuss a major restriction below
in section 4.3.3).

4.3.2 Symbolic expressions

Another way to represent real numbers is using symbolic formulas.
For example, if we assume that the integers, arithmetic operations, and the
constant 7t are known symbols, we can represent v/2 + gn by a string en-
coding this expression, or in tree form such as (+, (v/+,2), (%, (/,5,3),)).

The countable subset of real numbers that can be described by sym-
bolic formulas in a fixed formal language are sometimes called symbolic real
numbers, or definable real numbers. 5

Symbolic formulas are trivially effective in the sense that we can ex-
press operations just by concatenating formulas. Of course, this is cheating
in a way. Just as money represents real value only when we expect that
it can be traded for goods and services, a symbolic formula represents
a real value only when we can interpret it as a recipe for constructing a
computable function out of basic programs for computing 7, adding, etc.

4.3.3 The equality problem

With computable functions or a sufficiently powerful symbolic for-
mula language (for example, allowing logical operations and expressions
for operations of calculus like lim, f(x), | f(x)dx), we can arguably express
all real numbers that arise in real-world problems.

However, being able to express numbers does not automatically mean
that we can perform all operations effectively. The main stumbling block
for real numbers is the humble “=" operator.

Problem 6 (Testing equality). Given two real numbers a and b, decide whether
a = b, or equivalently whether a — b = 0.

The familiar heuristic for comparing real numbers is to compare nu-
merical approximations. For example, leta = 8 [~ cos(2x) [T, cos (£) dx.

5. These notions are informal. Formalizing the notion of a definable real number
runs into subtle problems: see https://mathoverflow.net/questions/44102/
is-the-analysis—as-taught-in-universities—-in-fact-the-analysis-of-definab
44129#44129

https://mathoverflow.net/questions/44102/is-the-analysis-as-taught-in-universities-in-fact-the-analysis-of-definable-numb/44129#44129
https://mathoverflow.net/questions/44102/is-the-analysis-as-taught-in-universities-in-fact-the-analysis-of-definable-numb/44129#44129
https://mathoverflow.net/questions/44102/is-the-analysis-as-taught-in-universities-in-fact-the-analysis-of-definable-numb/44129#44129

8 Chapter 4. Exemple

Here is a numerical evaluation of a to 15 significant digits using the mpmath
library in SageMath. ©

sage: from mpmath import mp

sage: print (8 x mp.quadosc (lambda x: mp.cos (2xx) * mp.nprod (
lambda n: mp.cos(x/n), [1,mp.inf]),

. [O,mp.inf], omega=1l))

3.14159265358979

The result looks suspiciously like 7, and indeed

sage: print (mp.pi)
3.14159265358979

is in perfect agreement. But this is a trick example! The real number a is
actually not equal to 7, the difference being about 10~#! [21]. We cannot
generally prove that two real numbers are equal simply by comparing
numerical approximations. This principle was hopefully already obvious
to the reader, but it is too important not to make an example of!

We can prove that two computable real numbers are unequal by com-
puting them to sufficient precision to find a difference, for example to
50 digits in this example. In other words, inequality for computable real
numbers is semi-decidable (the algorithm of comparing with iteratively
higher precision always terminates with the correct answer for unequal
numbers, but hangs forever for equal numbers). However, we may not
know in advance if it will take 50 or 1010 digits to find a difference.

Deciding equality is easy when computing in Z since we have a unique
or canonical representation. Given two integers a, b in digital representation,
the standard multiplication algorithm produces the unique digital repre-
sentation for a x b. This allows us to prove, for example, 2 X 6 = 3 x 4 = 12.
Similarly, algebraic numbers can be represented canonically, making Prob-
lem 6 effective over Q.

We cannot in general test if two programs or symbolic expressions
represent the same real number by reducing them to a canonical form.
Comparing two computable numbers represented by programs essentially
runs into the halting problem. With symbolic formulas, we can implement
simplification rules for some cases, for example V2/2—-1/v/2 = 0 and
sin(7r) = 0, but the task is hopeless for sufficiently complex expressions.
Indeed, we can basically encode arbitrary mathematical propositions as
symbolic equalities.

6. Because of the oscillatory nature of the integral, we have to use special quadosc
function to get an accurate value. This particular example will take a long time to run!

4.3. Real numbers 9

Example 3. The truth of the Riemann hypothesis is equivalent to

I +it) 2y, log(8m)
7/ <| 70)tzd_8+4+4 2 @)

where {(s) is the Riemann zeta function and v = limy, e [(Tp_; 1) — log(n)]
is Euler’s constant.”

A proof or disproof of this conjectured equality between real numbers
is eligible for the Millennium Prize—literally a million dollar question.

Implications for computable functions

Issues with equality testing and decidability appear as soon as we
attempt to construct lazy or symbolic representations of real numbers. For
example:

— Given a symbolic or algorithmic description of a sequence a,, how
do we know that x = lim;,_,. a, exists? (In general, it is unde-
cidable whether a sequence of rational numbers described by an
algorithm is convergent; this follows from the halting problem.)

— Given a real number x, we need to know that x # 0 before we can
say that 1/x represents a real number. Likewise, for a discontinu-
ous step function such as

f(x):{1 x}O,

0 x<0

we cannot compute the value at x = 0 if x is given by a program,
because arbitrarily accurate approximations of x may have either
sign.

The last example reveals the following important principle:

Theorem 7. All computable functions are continuous.

It is useful to consider some examples of computable and noncom-
putable functions in light of Theorem 7. For example, the solution of a
nonsingular linear system with computable input is also computable.

Theorem 8. A~ is computable if A € M, ,(C) is invertible and computable.

7. https://mathoverflow.net/q/279936. Exercise: check this equation numer-
ically to several digits using mpmath. You will need to break up the integral between the
successive zeros of the zeta function.

https://mathoverflow.net/q/279936

10 Chapter 4. Exemple

Gaussian elimination solves this problem effectively: although it in-
volves zero testing, we can always find 7 nonzero pivot elements if A has
full rank, at sufficiently high precision p. On the other hand, we cannot
compute the rank of general matrices; for example, given

1 00
A=11 ¢ 0
0 0O

where ¢ is a computable number which may represent 0, we can at best
compute the lower and upper bounds 1 < rank(A) < 2.

For another important example, polynomial roots and matrix eigen-
values are computable (note that polynomial roots and eigenvalues change
continuously with the coefficients).

Theorem 9. If the coefficients of f € C|x] are computable and the leading coeffi-
cient is nonzero, then for any p € Z with p > po for some po, we can compute a
list of disjoint disks of radius 2~ such that each root of f is contained in one disk
and each disk contains at least one root.

The multiplicity of a root (or the multiplicity of an eigenvalue) is not
a computable function in general since this amounts to performing exact
comparisons. Indeed, the number of distinct roots of f(x) = x(x +¢) isa
discontinuous function of €. The best we can do in case of multiple roots
is to prove (via Rouché’s theorem) that a sufficiently small disk contains a
cluster of exactly m roots (which may or may not be identical). Similarly, we
cannot decide the existence of real roots of multiplicity m > 1: the number
of real roots of f(x) = x? + ¢ is a discontinuous function of «.

There are many popular algorithms to compute roots or eigenvalues,
often without a proof of correctness. In practice, the best rigorous method
is usually to compute approximate roots using a heuristic numerical algo-
rithm and rigorously validate the roots using a posteriori methods.

4.3.4 Decidability for special sets of numbers

There are special circumstances where we can prove equality by direct
numerical computation. An example is when comparing algebraic num-
bers: given f € Z[x], it is possible to write down an explicit lower bound
(in terms of the degree and coefficient size of f) for the separation of two
distinct roots of f. Given two algebraic numbers «, 8, this means that we
can compute an explicit ¢ > 0 such that |« — | < e implies that & = B.

There have been few successful attempts to identify subsets of real
or complex numbers larger than Q with effective equality test. One of

4.4. Approximate real numbers 11

the most natural sets to consider is the elementary numbers, defined as the
numbers that can be represented as symbolic expressions composed of
algebraic numbers, algebraic operations, and elementary functions (exp,
log and trigonometric functions and their inverses).

Theorem 10 (Richardson and Fitch). Equality of elementary numbers is decid-
able if Schanuel’s conjecture is true [22].

Schanuel’s conjecture is a conjecture in transcendence theory which
states, essentially, that there are no unexpected algebraic relations between
elementary numbers; for example, 7T + ¢ is expected to be transcendental.
Resolving Schanuel’s conjecture is widely considered a hard problem, but
Richardson and Fitch were able to formulate a semi-algorithm that will
decide whether two elementary numbers are equal unless the algorithm
encounters a counterexample to Schanuel’s conjecture during its execution,
in which case the program will hang forever.

The following associated decision problem for elementary functions is
known to be undecidable.

Theorem 11 (Richardson). It is undecidable in general whether a function
f (x) represented by a symbolic formula containing rational numbers, arithmetic
operations, 71, 10g(2), e and sin(x) satisies f(x) > 0 everywhere. If the operation
x| is included, deciding if f(x) = 0 everywhere is also undecidable.

One of the more promising ideas for an effective transcendental ex-
tension of Q is the so-called ring of periods [30]. A period is any complex
number that can be expressed as an integral [, f where f is an algebraic
function and A is a subset of R" defined by algebraic inequalities (wWhere
all coefficients are algebraic numbers). For example, 7 = 4 fol V1 — x2dx
and log(2) = flz x~1dx are periods.

It can be shown that periods are computable in the sense of Defini-
tion 4.3.1 [23]. The question of equality testing is still an open problem:

Conjecture 4.3.3 (Kontsevich-Zagier). Equality is decidable for periods. Con-
cretely, given two equivalent period integrals [, f and [, g, one can be trans-
formed into the other algorithmically using repeated application of simple transfor-
mations (change of variables, the Stokes theorem).

4.4 Approximate real numbers

In this section, we will discuss the basic principles of reliable computer
arithmetic and verified numerical computing, as well as the computational
complexity of approximate real arithmetic.

12 Chapter 4. Exemple

The fundamental idea in numerical computing is to replace a (possibly
hard to describe) real number x by an easily described rational number
X = x + ¢, where the error ¢ in general will be unknown but often can be
bounded or at least estimated. It is often convenient to divide sources of
numerical error into two categories:

— Rounding errors resulting from finite-precision arithmetic.

— Truncation or discretization errors, for example resulting from re-
placing an infinite series Y 4, by a finite sum Y)Y, a,,, or replac-
ing the true solution of a differential equation by an approximate
solution computed using a discrete approximation with some step
size h > 0.

The study of how errors arise and propagate through computations is
important, but we will cover it with a minimum of detail, omitting concepts
such as forward and backward stability and condition numbers as well as
the details of floating-point error analysis. These topics are discussed in
any numerical analysis textbook.

4.4.1 Floating-point arithmetic

For efficiency reasons, most implementations restrict rational approx-
imations to the form ¥ = a - 2% with 4,b € Z. A number of this form is
called a binary floating-point number (or dyadic number) with mantissa
or significand a and exponent b. If a is restricted to |a| < 27, then X is said
to be a p-bit floating-point number.® In applications where the numerical
quantities do not need to span a large range of magnitudes, fixed-point
numbers are sometimes preferred (in which the exponent is fixed, say, to
b=—-p/2).

Operations on floating-point numbers generally require rounding to
preserve the condition a,b € Z, |a|] < 277. A good rule of thumb is
that each rounding operation introduces a relative error |x — x|/ |x| of
order 277. The appropriate precision p for a computation involving many
operations depends on the required accuracy for the final output as well as
the numerical stability of any intermediate steps which may lose significant
bits.

The binary32 and binary64 types of the IEEE 754 standard (with
p = 24 and p = 53 respectively, equivalent to 7 and 16 decimal dig-
its) are supported in most hardware and have almost become synony-
mous with floating-point arithmetic. Higher precision usually needs to be

8. The significand is often defined as a dyadic fraction in £[0.5,1) instead, or in [0.5,1)
with a separate sign bit. We ignore such representation issues here as well as the matter of
Nal, infinities, overflow and underflow.

4.4. Approximate real numbers 13

implemented in software. Common alternatives include double-double
arithmetic (p = 106), implemented using pairs of binary64 "digits", and
arbitrary-precision arithmetic (any p allowed by the available memory).
The drawback of arbitrary-precision arithmetic is slower speed than the
arithmetic supported natively by the hardware, typically by a factor 10 to
1000.

SageMath offers several options for working with arbitrary-precision
floating-point numbers, including RealField (based on the MPFR li-
brary), the mpmath library, and the Pari/GP system. Here is an example
with mpmath, evaluating 7 = 2 f_ll V1 —x2dx (mp.dps = 100 sets the
precision to 100 digits, equivalent to p = 336 bits):

sage: from mpmath import mp

sage: mp.dps = 100

sage: print (2 x» mp.quad(lambda x: mp.sqrt(l-x*%2), [-1,11))
3.1415926535897932384626433832795028841971693993751
05820974944592307816406286208998628034825342117068

We should make a remark about the relevance of such high-precision
arithmetic. Mathematical applications requiring numerical computations
with precision p > 103 are not uncommon, for example:

— Computing long-term solutions of chaotic dynamical systems.

— Computing distant entries of recurrent sequences.

— Evaluating power series with alternating signs near the boundary

of convergence.

— Computing any small quantity that, for algorithmic reasons, has to

be determined from a precise cancellation of two large quantities.

— Proving inequalities between close numbers.

— Guessing or proving discrete values or exact formulas from numer-

ical approximations, for example using integer relation methods.

A third important source of error in scientific computing, besides the
two kinds of algorithmic error (rounding and truncation), is uncertainty in
input data coming from physical measurements or statistical experiments.
There are few situations in science and engineering where it makes sense
to speak of more than 7 significant digits, let alone 16 digits, but there are
nonetheless many situations that require higher precision due to numerical
errors arising or being magnified in the numerical algorithms used to
process the data. In general, more data and more operations mean that
higher precision is needed to combat error accumulation. ?

9. There are some notable exceptions: for example, some neural network applications
have been found to work well with 16-bit floating-point arithmetic (p = 10 or p = 8

14 Chapter 4. Exemple

4.4.2 Error propagation and interval arithmetic

We can bound (or estimate) the cumulative error in an approximate
computation by bounding (or estimating) the error sources of the individual
operations and calculating bounds (or estimates) for how the errors propa-
gate when the operations are composed. For nontrivial algorithms, doing
the error analysis by hand is often difficult. One solution to this problem is
to propagate error bounds automatically using interval arithmetic [14].

The fundamental principle of interval arithmetic is to work with set
enclosures (also called inclusions), where a value x is represented by an
easily described set X such that x € X. Functions should preserve such
enclosures.

Definition 4.4.1. An interval extension of a function f : A — B is a function
F : P(A) — P(B) that maps sets X C A to sets F(X) C B in such a way
that for all x € X, we have f(x) € F(X). In other words, F(X) is a superset of

{f(x):x € X}.

This rule is sometimes called the inclusion principle. It is clear that
interval extensions of functions can be composed, and it should be empha-
sized that the same idea can be used for arbitrary mathematical objects,
not just real numbers. Enclosures do not need to be tight: for example,
given X = [0, 1], a tight enclosure for the image of sin(x) on X would be
[0, 1], but a function that returns [—2, 2] would be just as correct. There is
often an efficiency tradeoff in the quality (tightness) of interval enclosures;
often computing the tightest possible interval is much more expensive than
merely computing a reasonable one.

We typically want to ensure, at least, that the interval extension pre-
serves continuity: if f is continuous at x, then for any sequence of inter-
vals X, around x such that width(X,,) — 0 as n — co, we should have
width(F(X,)) — 0.0 Such an interval extension is illustrated in Figure 4.2.
This property ensures convergence in various algorithms and provides a
natural interval counterpart to Definition 4.3.2. (For isolated discontinuities,
we might ask that the amount of overshoot converges as X;,, — 0.)

There are different possibilities for representing real numbers using
intervals. One is to represent [a, b] by a pair of floating-point endpoints a, b.
This is implemented in SageMath as RealIntervalField, which uses

mantissa bits) or even with 8-, 4-, 2- or 1-bit datatypes. There is currently active research
into mixed-precision algorithms (not just for neural networks) that try to do as much work
as possible in minimal precision and only switch to higher precision for critical sections. [4]

10. If floating-point arithmetic is used to represent the intervals, this requires that the
precision is increased sufficiently rapidly along with .

4.4. Approximate real numbers 15

Figure 4.2 — Visualization of a continuity-preserving interval extension of a func-
tion of a real variable: smaller input intervals X lead to smaller output intervals
F(X) enclosing the graph y = f(x). The output intervals are not as tight as
possible.

MPFI behind the scenes. Another is to represent an interval in midpoint-
radius form [m £ r] = [m — r,m + r| (ball arithmetic). This is implemented
inRealBallField which uses Arb behind the scenes. Generally speaking,
endpoint-based intervals are more natural for representing subdivision of
space while balls are more efficient for representing single numbers, although
the representations are interchangeable for many purposes.

In general, testing equality of real numbers represented by intervals
does not make sense except in the special case of intervals that happen
to be exact (zero-width). However, we can test if intervals are disjoint
(implying inequality) or overlapping (implying possible equality). The
result of subtracting two intervals representing the same real number is an
interval containing zero:

sage: R RealBallField(53)

sage: x = R(2); sqgrt(x)/2 - 1/sqrt (x)
[+/— 4.45e-16]

sage: R = RealBallField(333)

sage: x = R(2); sqrt(x)/2 - 1/sqrt(x)
[+/- 1.72e-100]

We can implement lazy computable numbers and functions quite eas-
ily in arbitrary-precision interval arithmetic by writing a loop that attempts
an evaluation with increased precision until a tolerance goal is met:

sage: def f(p):

e e prec = 10

el while True:

et R = RealBallField(prec)

16 Chapter 4. Exemple

el x = (R(163) .sgrt ()*R.pi()) .exp()—-640320xx3-744
e print ("prec = %s gave %s" $ (prec, x))

el if x.accuracy() > p: # relative accuracy
e break

e prec x= 2

sage: £ (30)

prec = 10 gave [+/- 4.99e+16]

prec = 20 gave [+/- 6.83e+13]

prec = 40 gave [+/- 4.71le+7]

prec = 80 gave [+/- 4.76e-5]

prec = 160 gave [-7.499274028018143e-13 +/- 5.65e-29]

Note that such a program may hang forever in case of a discontinuity
or when comparing using a relative tolerance test when the value is zero.

4.4.3 The dependency problem

Interval arithmetic tracks error bounds rigorously, but may fail to do
so optimally. Consider the problem of computing a sum Sy = Y | x;
given approximations Xy with errors ¢ = X; — x; such that |g;| < 277.
How large can the total error [Sy — YN, X¢| be?

The best possible worst-case error bound is N - 277, and if we perform
the computation in interval arithmetic, we will get precisely this bound
(plus any additional terms from rounding errors if the summation is done
in approximate arithmetic).

However, the worst-case error bound is sometimes pessimistic. If the
errors ¢ are independent and positive or negative with uniform probability,
then the central limit theorem (or the theory of random walks) tells us that
the expected error will be of order O(v/N) - 277. This kind of heuristic
error estimate often describes the behavior of numerical algorithms more
accurately than a worst-case analysis. Interval arithmetic is oblivious to the
errors being independent, and always gives the worst-case bound. !!

An extreme case is when the errors are entirely dependent and cancel
out: for example, if N = 2 and ¢ = —¢p, we have x1 + x2 = X1 + X3
exactly, but interval arithmetic still gives the error bound 2 - 277. When a
dependency is fed back into a computation in a loop, this can lead to an
error bound that grows exponentially. The simplest example is repeatedly
subtracting a quantity from itself:

11. Exercise: test a few computations with both floating-point arithmetic and interval
arithmetic and attempt to observe this difference in practice.

4.4. Approximate real numbers 17

sage: x = RealBallField(53) (2) .sqgrt ()
sage: X = X—-x; print (x)

[+/- 4.45e-16]

sage: X = X—x; print (x)

[+/- 8.89%e-16]

sage: X = X—-xX; print (x)

[+/- 1.78e-15]

[+/- 2.10e+6]
sage: X = xX—-X; print (x)
[+/- 4.20e+6]

This exponential blowup means that the precision has to be increased
exponentially with the number of iterations for a given final error tolerance.
High precision is sometimes unavoidable, for instance when evaluating
dynamical systems which really are sensitive to the initial conditions, but it
can also be a completely spurious effect. When using interval arithmetic, it
is often desirable to rewrite formulas or design the algorithms specifically
to minimize dependencies if possible.

An example of a situation where the dependency problem becomes sig-
nificant is solving linear systems. When Gaussian elimination is executed in
interval arithmetic, the error bounds generally blow up exponentially with
the matrix size 1, requiring precision of order O(n) digits. High precision
is unavoidable for ill-conditioned matrices, but the same blowup typically
also occurs for well-conditioned matrices where Gaussian elimination in
floating-point arithmetic is perfectly stable!

Because of this phenomenon, the best way to solve linear systems in
interval arithmetic is to compute an approximate floating-point solution
using traditional numerical methods and then use an a posteriori method to
obtain rigorous error bounds. !2

4.4.4 Complexity analysis in approximate arithmetic

The archetype of a fast algorithm involving real numbers is the Fast
Fourier Transform (FFT) which uses divide-and-conquer strategy to com-

12. The phenomenon that forward propagation of error bounds tends to lead to bounds
that blow up much faster than the true errors, for Gaussian elimination and also for other
algorithms for other problems, is regarded as one of the central facts of numerical analysis.
It was the central discovery of J. H. Wilkinson and the reason for his development of
backward error analysis in the 1960s. Wilkinson received the Turing Award in 1970.

18 Chapter 4. Exemple

pute a Discrete Fourier Transform (DFT) of a vector of complex numbers
n—1 .
Xe= Y xje 2™/ k=0,1,...,n—1
j=0

in O(nlogn) operations instead of the obvious O(n2). One of the most
important mathematical applications is to multiply polynomials quickly:
we can multiply two length-n polynomials with coefficients in C or R
using O(n log n) operations (instead of the obvious O(n?)) by evaluating
the polynomials at 2n roots of unity, multiplying the values pointwise,
and interpolating to get the 2n coefficients of the product polynomial. The
multi-point evaluations and interpolations are simply DFTs.

Simply counting arithmetic operations (operation complexity) is of-
ten insufficient to analyze numerical algorithms, because it ignores the
precision used to represent the numbers. An algorithm that uses fewer
operations sometimes requires higher precision, so “fast” algorithms are
not always a net win. It is often more realistic to use the bit complexity
model where we account for the number of bit operations (digit operations,
word operations) required for p-bit numbers.

We can clearly add or subtract two p-bit integers or floating-point
numbers using O(p) bit operations. Multiplication has quasilinear cost:

Theorem 12 (Harvey-van der Hoeven). It is possible to multiply two p-bit
integers using O(p log p) bit operations.

This result was, rather amazingly, proved only in 2019 [27]. 13 The
fundamental idea behind fast integer multiplication is that the integer 325 is
the same thing as the polynomial 3x2 4 2x + 5 evaluated at x = 10, and with
a bit of bookkeeping, we can view integer multiplication as polynomial
multiplication and use the FFT method. The first integer multiplication
algorithm using FFT was published in 1971 by Schénhage and Strassen,
achieving a complexity of O(p log p loglog p) bit operations [26]. The extra
loglog p factor comes from the observation that the operations in the FFT
ostensibly cannot have O(1) cost: the arithmetic operations in the FFT
depend recursively on integer multiplication, and the precision of the
recursive operations must ostensibly grow with p. 4

The Harvey-van der Hoeven algorithm uses several ingenious
techniques to eliminate the loglogp factor, including replacing a one-

13. At the time of writing, the paper has not completed peer review. Fingers crossed!

14. Schonhage and Strassen published two algorithms: one using complex numbers,
and the other using exact integer arithmetic. It is the second version that is more commonly
known as the Schonhage-Strassen algorithm.

4.4. Approximate real numbers 19

dimensional FFT by a multidimensional FFT and using approximate resam-
pling to adjust the lengths of vectors. All the steps have to be very carefully
analyzed to take into account the approximation errors, precision loss, and
bit complexity.

In practice, the difference between O(plog ploglog p) and O(plog p)
is only realized for astronomically large p: for implementations, constant-
factor overheads matter much more. In the GMP bignum library, FFT
integer multiplication (specifically, the Schonhage-Strassen algorithm) is
used for numbers larger than about 100,000 decimal digits. For smaller
numbers, it is faster to use the the O(p?) schoolbook algorithm (up to about
1000 digits) and the O(p'*®) divide-and-conquer Karatsuba algorithm or
its generalizations (from about 1000 to 100,000 digits) [19]. Computations
with tens of thousands of digits may not seem common, but they do appear
occasionally in computational number theory, and there are also situations
where it pays off to replace a large number of operations on small numbers
with a few operations on huge numbers.

Other algebraic operations on integers and floating-point numbers are
based on integer multiplication [3].

Theorem 13. It is possible to compute the quotient |a/b] of a 2p-bit integer by
a p-bit integer, or the square root |\/a] of a 2p-bit integer, or the p-bit approx-
imate quotients or square roots of floating-point numbers, using O(plog p) bit
operations.

The idea is to rewrite the operation as finding the solution to an alge-
braic equation and apply Newton’s method for root-finding in a way that
only requires additions, subtractions and multiplications in each iteration
step. For example, to compute 1/b, we can solve the equation x —1/b =0,
giving the iteration xj1 = 2x; — bx?. Each step roughly doubles the num-
ber of correct digits, so the algorithm converges to p-bit precision within
O(log p) iterations. The reader is encouraged to fill in the details: why do
the O(log p) iterations not increase the complexity to O(plog® p)?

Theorem 14. Given a complex floating-point number z, it is possible to compute
rational complex approximations of e* and the principal branch of log(z) to within
an error of 27 using O(plog? p) bit operations.

Through composition, this complexity result extends to the evaluation
of any elementary function (involving the composition of arithmetic opera-
tions, exponentials, logarithms, trigonometric and inverse trigonometric
functions), excluding singular points on the domain of the functions. 1

15. It is important to note that this kind of complexity bound is non-uniform with

20 Chapter 4. Exemple

The algorithm behind Theorem 14 is based on the arithmetic-geometric

mean iteration b
ag + by
Ak41, bk+l = 5 ;s\ ﬂkbk (4.2)

which, for any positive real numbers ag, by as initial values, converges to a
common limit a4, = beo. Like Newton’s method, the arithmetic-geometric
mean iteration doubles the number of correct digits in each step so that
O(log p) iterations suffice for p-bit precision. Rather remarkbly, the com-
putation of elementary functions in O(plog® p) bit operations involves
approximating log(z) by a non-elementary function (an elliptic integral)
which is then evaluated by a complex version of (4.2).

It is possible to achieve a slightly worse complexity of O(plog® p)
using only functional equations (such as e**¥ = e*e¥) and evaluation of
Taylor series. The evaluation of a truncated Taylor series f(x) ~ Y&, axx*
must be done in a particular divide-and-conquer fashion called binary
splitting.

Binary splitting can be illustrated by the computation of the factorial
N!'=1-2-3---- N: the bit complexity of computing the products iter-
atively is N2*°(1), but when done in a divide-and-conquer way, the bit
complexity reduces to N'+°(1). This technique can be applied to matrix
products MyMp_1 - - - Mg where the matrices have small rational entries,
and the partial sums of the Taylor series of e* can be described as such ma-
trix products. The method also generalizes to evaluating D-finite functions
(function satisfying linear ordinary differential equation with polynomial
coefficients), including functions such as erf(x) and Bessel functions.

4.5 Calculus: differentiation and integration

In this last section, we come to grips with the problem of computing
properties of real or complex functions, going beyond the task of just
evaluating a function at a given point. We consider two fundamental
operations of calculus: computing derivatives and integrals.

The difficulty of either problem depends on how we represent a func-
tion and in what form we expect the answer. We consider three possibilities:
functions given by symbolic expressions, computable functions given as
“black box” programs, and functions represented by approximants.

To keep things simple, we only consider functions of one real or com-

respect to the value of z. The reader may investigate how the cost of computing ¢* and
tan(z) varies with the value of z.

4.5. Calculus: differentiation and integration 21

plex variable (high-dimensional differentiation and integration are prob-
lems that come with their own cans of worms).

4.5.1 Symbolic calculation

Suppose that we have a function represented by a symbolic expression
such as f(x) = e*’ /x which may be evaluated for a given numerical
value of x by traversing the expression tree and applying the constituent
operations (x2, %, /) to the partial numerical values. It is easy to construct
a symbolic expression for the derivative f/'(x) = ¥ (222 — 1) /x2 using
repeated application of the chain rule.

In practice, the expression for f'(x) can grow large, so a better way
to evaluate f'(x) is to traverse the tree for f(x) itself and evaluate both
the function value and the derivative simultaneously by applying the
operations to truncated series a + be + O(e?), where b represents the first
derivative. This is known as automatic differentiation (AD). The same
method can be generalized to higher derivatives.

It is less obvious how to find an antiderivative f(x) + C given the
derivative f’(x). Except for special circumstances where we can use a trick
such as integration by parts or a simplifying change of variables, there is no
general “inverse chain rule”. Indeed, ¢* does not have an antiderivative
expressible in terms of elementary functions.

To be more precise, what we can solve in symbolic form depends on
what we allow as symbols. If we introduce the function erf(x), we can
represent the antiderivative of ¢*. If we introduce the function I'(x), we
have no closed form for I'(x) (until we add this as yet another function).

Indefinite integration

There is a systematic procedure for symbolic indefinite integration,
the Risch algorithm, which can decide whether an elementary function
has an elementary antiderivative, and if so, find it. It is even possible to
generalize the Risch algorithm to handle certain non-elementary functions
such as erf(x). The basis of the Risch algorithm is to recast integration as
an algebraic problem involving elements of differential fields.

The Risch algorithm is not actually a complete algorithm because it
depends on having an equality test for symbolic expressions. Already
constants pose a problem: f(x) = x + (b —a)e* is elementary integrable
if and only if 4 = b. Even as a heuristic method, the Risch algorithm is

22 Chapter 4. Exemple

extremely complicated and has never been implemented fully. '® Moreover,
the Risch algorithm can be expensive to run and does not necessarily give
results in the simplest possible form; because of this, computer algebra
systems usually attempt pattern-matching heuristics before falling back to
the Risch algorithm.

Definite integration

Computing a definite integral | ab f(x)dx using symbolic mehods is,
perhaps surprisingly, a substantially different problem from finding a sym-
bolic indefinite integral F(x) = [f(x)dx. There are two reasons for this:

— Definite integrals between particular endpoints 4, b of interest can

often be expressed in simple terms even when the indefinite in-
tegral cannot. For example, [e~ dx = 1(m/z)V?, for z > 0.
Computer algebra systems use various techniques (beyond the
scope of the present text) to find such solutions.

— The fundamental theorem of calculus fab f(x)dx = F(b) — F(a)
only applies when f is continuous on [, b]. In general, symbolic
definite integration requires locating singular points, which can be
a difficult problem. This has been a frequent source of bugs in com-

puter algebra systems, where [ub f(x)dx for a real-valued function
f(x) might even return a complex result such as 1.23456 + 3.14159i
because of a mishandled branch point. Comparing symbolic re-
sults with results of numerical integration as a sanity check is often
a good idea!

When symbolic indefinite integration is applicable, it often has one
major advantage over numerical integration: it tends to be less sensitive
to the behavior of the function. For example, to evaluate |, 01 sin(Nx)dx, it
makes little difference to symbolic integration whether N = 1 or N = 10!,
but numerical integration algorithms will struggle with the latter.

4.5.2 Black-box computable functions

Given a black box implementation of f(x) — that is, a program that
evaluates f(x) numerically at a given value x — there are various numerical
algorithms for approximating the derivative or integral. The simplest

methods are a step sum approximation fub f(x)dx ~ Y, f(a+ nh) and

16. Currently, FriCAS claims to have the “most complete” implementation. The status
of this implementation is discussed at http://fricas-wiki.math.uni.wroc.pl/
RischImplementationStatus.

http://fricas-wiki.math.uni.wroc.pl/RischImplementationStatus
http://fricas-wiki.math.uni.wroc.pl/RischImplementationStatus

4.5. Calculus: differentiation and integration 23

a finite difference f'(x) ~ (f(x+h) — f(x))/h, for some h > 0. If f is,
respectively, Riemann integrable and differentiable, these approximations
converge to the exact value as h — 0.

To bound the discretization error as a function of h (or equivalently,
choose & for a desired error tolerance 277), we need some knowledge about
the regularity of f, typically a bound for the higher derivatives of f. It is not
possible to deduce such a bound by sampling f at finitely many isolated

points: fab f(x)dx can be perturbed arbitrarily much by a perturbation that
is arbitrarily narrow (say, a step function, or a localized smooth peak such
as Ne—N*%),

Similarly, for any tolerance 277, f(x) is indistinguishable from a per-
turbed version whose derivative may be arbitrarily large or even infinite,
for example f(x) + esin(x/e?) or f(x) + eH(x) where H(x) is a step func-
tion (with H'(0) = o0). To take an even more pathological example, the
Weierstrass function f(x) = Y ;752 " cos(3"x) is continuous and indeed
computable, but nowhere differentiable; there is no way to deduce this
property from a finite number of samples.

If we are given a black box implementation of an interval extension of

f(x), then we can often enclose | ab f (x)dx rigorously using a simple subdi-
vision method as in Figure 4.2. This method does not even require continu-
ity of f(x): for example, piecewise continuous functions with step disconti-

nuities are integrable in this way. In other words, g(a,b) = | ab f(x)dx may
be everywhere computable (in the sense of Definition 4.3.2) even if f(x) is
not everywhere computable.

Differentiation, on the other hand, is inherently ill-posed: we cannot
rigorously evaluate f/(x) using a black box interval extension of f(x) alone
without additional regularity assumptions.

Holomorphic functions are an important special case. Thanks to the
Cauchy integral formula, a black box complex interval extension of a holo-
morphic function f(z) is sufficient to both integrate and differentiate locally
with rigorous error bounds. Moreover, holomorphic functions admit fast
algorithms: whereas a simple step sum or interval subdivision algorithm
for integration in general will require exponentially many evaluations of f
to converge to a 277 tolerance, algorithms taking full advantage of holo-
morphicity only need O(p) samples. If f(z) for example takes p'*°(!) bit
operations to evaluate, then we can evaluate its integral using p>*°(!) bit
operations. It should be stressed that this only applies “locally” when the
path of integration is isolated from singularities; integrating functions near
singularities or on an infinite path is more difficult in general.

24 Chapter 4. Exemple

Example: a challenging integral

There are many examples of pathological input for numerical integra-
tion algorithms. One such example is the “spike integral”

1
/ sech?(10(x — 0.2)) 4 sech*(100(x — 0.4)) 4 sech®(1000(x — 0.6)) dx.
0

If we evaluate this with the numerical_integral function in SageMath
(which calls the numerical integration code in the GSL library), we get the
following result:

sage: numerical_integral (lambda x: sech(l0*x-2)x%x2
... + sech (100%xx-40)*x4 + sech(1000%x-600)*%x6, 0, 1)
(0.2097360688339336, 6.166358647858423e-14)

The second number in the output is an estimate of the error. Although
the estimate suggests 13 correct digits, in fact only two digits are accurate.
The reason is that the integrand, shown in Figure 4.3, has three spikes, and
the samples chosen by the numerical integration code miss the contribution
of the narrowest spike.

We can get a rigorous result using the integration code for ball arith-
metic in Arb, which moreover permits computing the integral to high
precision quite easily:

sage: f = lambda x, _: (10*x-2).sech()xx2 +

e (100%*x-40) .sech()**4 + (1000%x-600) .sech()**6
sage: ComplexBallField(53) .integral(f, 0, 1)
[0.21080273550055 +/- 4.44e-15]

sage: ComplexBallField(333).integral(f, 0, 1)
[0.21080273550054927737564325570572915436090918643678119034
785050587872061312814550020505868926155764 +/- 3.67e-99]

The algorithm exploits the assumption that the integrand is holomor-
phic with the possible exception of poles; it uses interval arithmetic to
rigorously isolate the path of integration from the poles and to bound the
error of a numerical integration algorithm (Gaussian quadrature combined
with subdivision), as illustrated in Figure 4.3 [28].

The tightness of the enclosures computed in interval or ball arithmetic
can be highly sensitive to the order of operations and choice of basic func-
tions. To demonstrate this, the evaluation becomes much slower if one uses
cosh (x) **—n instead of sech (x) **n.

4.5. Calculus: differentiation and integration 25

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.3 — Top: the integrand in the spike integral. Middle: subdivisions of
the path chosen by the Arb integration code. Bottom: the poles of the integrand
(red dots) and the covering ellipses chosen by the Arb integration code to isolate
the path of integration from the poles and to subsequently bound the error of a
quadrature rule.

26 BIBLIOGRAPHY

4.5.3 Approximants

Finally, one of the ways to represent a function on the real or complex
numbers is to approximate it by a simpler function, called an approximant.
Common types of approximants include polynomials, piecewise polynomi-
als, trigonometric polynomials, and rational functions, all of which have the
convenient property that operations such as differentiation and integration
of the approximant can be carried out exactly term by term.

One natural choice of approximant is a truncated Taylor series, which
gives an optimal local approximation of a holomorphic function at the point
of expansion. At least locally, we need O(p) terms for 2”7 tolerance, putting
the bit complexity of typical operations at p>*°(1) since FFT based arithmetic
on polynomials of degree n costs O(nlogn) arithmetic operations.

A truncated Taylor series together with a bound for the truncation
error is also called a Taylor model [29]. Besides the obvious application of
working with functions, Taylor models are useful as a way to avoid the
dependency problem in interval arithmetic: we can model a perturbed
quantity as truncated Taylor series with error term CeV rather than just
as a constant value with error term ¢; dependencies can then cancel out
correctly up to order V.

Another natural choice of approximant is a truncated Chebyshev se-
ries. Chebyshev polynomials have better uniform approximation properties
than Taylor polynomials, and there are fast algorithms for manipulating
polynomials in the Chebyshev basis just as in the monomial basis. Cheby-
shev expansions are the foundation of Chebfun, which the authors describe
as “an analogy of floating-point arithmetic for functions” [24]. Recently,
Chebyshev expansions with rigorous error bounds have been investigated
as an alternative to Taylor models [25].

Bibliography

[1] P. Zimmermann et al. Computational Mathematics with SageMath. http:
//sagebook.gforge.inria.fr/english.html, 2018.

[2] J.von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 2013.

[3] R. P. Brent and P. Zimmermann Modern Computer Arithmetic,
Cambridge University Press, 2010. http://www.loria.fr/
~zimmerma/mca/mca-cup-0.5.7.pdf.

http://sagebook.gforge.inria.fr/english.html
http://sagebook.gforge.inria.fr/english.html
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.7.pdf
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.7.pdf

BIBLIOGRAPHY 27

[4] N. Higham. The Rise of Multiprecision Computations, 2017.
https://www.maths.manchester.ac.uk/~higham/talks/
samsil7.pdf

[5] D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra in the
service of mathematical physics and number theory. Computers in
mathematics, 125:109, 1990.

[6] D. H. Bailey and J. M. Borwein. High-precision arithmetic in mathe-
matical physics. Mathematics, 3(2):337-367, 2015.

[7] T.Y. Chow. What is a closed-form number?. The American Mathematical
Monthly, 106.5, 440-448 (1999).

[8] B. Poonen. Undecidable problems: a sampler. In Interpreting Godel:
Critical Essays, 211-241, 2014.

[9] S. M. Rump. Verification methods: Rigorous results using floating-
point arithmetic. Acta Numerica, 19:287-449, 2010.

[10] N. Miiller. The iRRAM: Exact arithmetic in C++. In Computability
and Complexity in Analysis, pages 222-252. Springer, 2001. http://

irram.uni-trier.de.

[11] N. Revol and F. Rouillier. Motivations for an arbitrary precision in-
terval arithmetic library and the MPFI library. Reliable Computing,
11(4):275-290, 2005. http://perso.ens—1lyon.fr/nathalie.
revol/software.html.

[12] M. Sofroniou and G. Spaletta. Precise numerical computation. Journal
of Logic and Algebraic Programming, 64(1):113-134, 2005.

[13] W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Founda-
tions of Computational Mathematics, 2(1):53-117, 2002.

[14] W. Tucker. Validated numerics: a short introduction to rigorous computa-
tions. Princeton University Press, 2011.

[15] J. van der Hoeven. Fast evaluation of holonomic functions. Theoretical
Computer Science, 210:199-215, 1999.

[16] J. van der Hoeven. Ball arithmetic. HAL preprint, 2009. http:
//hal.archives-ouvertes.fr/hal-00432152/fr/.

[17] J. van der Hoeven, G. Lecerf, B. Mourrain, P. Trébuchet,]. Berthomieu,
D. N. Diatta, and A. Mantzaflaris. Mathemagix: the quest of modu-
larity and efficiency for symbolic and certified numeric computation?
ACM Communications in Computer Algebra, 45(3/4):186-188, January
2012. http://mathemagix.org.

https://www.maths.manchester.ac.uk/~higham/talks/samsi17.pdf
https://www.maths.manchester.ac.uk/~higham/talks/samsi17.pdf
http://irram.uni-trier.de
http://irram.uni-trier.de
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://mathemagix.org

28 BIBLIOGRAPHY

[18] L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, and P. Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct
rounding. ACM Transactions on Mathematical Software, 33(2):13, 2007.

[19] T. Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 6.1.2 edition, 2017.

[20] A. Enge, M. Gastineau, P. Théveny, and P. Zimmermann. MPC: a
library for multiprecision complex arithmetic with exact rounding.
http://www.multiprecision.org/mpc/,2018.

[21] D. H. Bailey, J. M. Borwein, V. Kapoor and E. W. Weisstein. Ten
Problems in Experimental Mathematics. The American Mathematical
Monthly 113:481-509, 2006.

[22] D. Richardson and J. Fitch. The identity problem for elementary
functions and constants In Proceedings of the international symposium on
Symbolic and algebraic computation, ACM, 285-290, 1994.

[23] P.Lairez, M. Mezzarobba and M. Safey El Din. Computing the volume
of compact semi-algebraic sets arXiv preprint arXiv:1904.11705, 2019.

[24] T. A. Driscoll, N. Hale, and L. N. Trefethen, editors. Chebfun Guide.
Pafnuty Publications, Oxford, 2014.

[25] F. Bréhard, N. Brisebarre and M. Joldes. Validated and numerically
efficient Chebyshev spectral methods for linear ordinary differential
equations. ACM Transactions on Mathematical Software, 44(4), 1-42,
2018.

[26] A.Schonhage and V. Strassen. Schnelle Multiplikation grosser Zahlen.
Computing 7, 281-292, 1971.

[27] D. Harvey and J. van der Hoeven. Integer multiplication in time O(n
log n). HAL preprint, 2019. https://hal.archives-ouvertes.
fr/hal-02070778.

[28] F.Johansson. Numerical integration in arbitrary-precision ball arith-
metic. Mathematical Software — ICMS 2018, 255-263, 2018.

[29] M. Berz and K. Makino. Verified integration of ODEs and flows using
differential algebraic methods on high-order Taylor models. Reliable
Computing 4, 361-369, 1998.

[30] M. Kontsevich and D. Zagier. Periods. In B. Engquist and W. Schmid
(eds.), Mathematics unlimited—2001 and beyond, Berlin, New York:
Springer-Verlag, 771-808, 2001.

http://www.multiprecision.org/mpc/
https://hal.archives-ouvertes.fr/hal-02070778
https://hal.archives-ouvertes.fr/hal-02070778

