
Finding Hyperexponential Solutions of Linear ODEs by

Numerical Evaluation

Fredrik Johansson*1 Manuel Kauers*1 Marc Mezzarobba*1,2

*RISC-Linz

ISSAC 2013, Boston, MA

1 Supported by the Austrian Science Fund (FWF) grant Y464-N18
2 UMR 5668 CNRS – ENS Lyon – Inria – UCBL

1 / 28



Linear ODEs

Consider a linear differential operator

P = prD
r + pr−1D

r−1 + . . . + p1D + p0

where

D =
d

dx

pk ∈ C[x]

C is an algebraically closed, computable subfield of C

We want to find the hyperexponential solutions of Py = 0.

2 / 28



Hyperexponential solutions

A solution y of the equation Py = 0 is called hyperexponential if

Dy

y
∈ C(x).

Equivalently, y is hyperexponential iff

y = exp(
∫

v), v ∈ C(x).

Examples:
5x+ 1

3x+ 5
,

√
x+ 1, (x+ 1)

√
2 exp

(

x9

x− 1

)

3 / 28



Exponential and rational parts

Finding a hyperexponential solution h is easy if we know its exponential
part (≈ h up to multiplication by a rational function):

h = exp

(

1

1− x

)

(x+ 1)2

(x+ 2)(x+ 3)

Make the ansatz h = exp
(

1
1−x

)

u and look for rational solutions u.

Finding rational solutions is easy. The difficulty is to find the possible
exponential parts.

4 / 28



Local solutions

For each z ∈ C ∪ {∞} the equation Py = 0 has a basis of r linearly
independent (formal) local solutions.

The local solutions are generalized power series in

x̃ =

{

x− z if z 6= ∞
1/x if z = ∞

For each given z, such a basis is easy to compute.

5 / 28



Exponential parts of local solutions

A general local solution:

y(x̃) = x̃α exp
(

u(x̃−1/s)
)

m
∑

k=0

log(x̃)kbk(x̃
1/s)

α ∈ C

u a polynomial, u(0) = 0

s ∈ N

bk a power series

The (local) exponential part of y is the factor x̃α exp(u(x̃−1/s)), modulo
integer shifts of α.

6 / 28



Combining exponential parts

At each singular point z1, . . . , zn ∈ C ∪ {∞}, the exponential part of a
hyperexponential solution h must match exactly one of the exponential
parts among the local solutions.

Singularity zi Exponential part 1 Exponential part 2 . . .

z1 = 0
√
x exp

(

1
x

) √
x

z2 = 1 exp
(

1
1−x

)

1

z3 = ∞ √
x exp(x)

Example: h = (1− x)
√
x exp

(

1
x

)

is described by the tuple (1, 2, 1)

7 / 28



The combination problem

At each singular point zi, denote the local exponential parts by
Ei,1, . . . , Ei,ℓi , ℓi ≤ r.

Combination problem

Find all tuples j = (j1, . . . , jn) such that E1,j1 , . . . , En,jn are the
exponential parts of a hyperexponential solution.

There can be at most r such tuples.

Brute force: rn possibilities (exponential time).

8 / 28



Our algorithm

We use analytic continuation to reduce the combination problem to a
linear algebra problem.

We have to test only a polynomial number of combinations.

A different approach to eliminating combinations (using modular
techniques) is given by Cluzeau and van Hoeij (2004). They do not prove
that their method leaves a polynomial number of combinations.

9 / 28



Reducing the problem to linear algebra

Vi: vector space of all local solutions at zi
Vi,j ⊆ Vi: vector space of local solutions at zi with exponential part Ei,j

W : vector space of all global solutions
Wi,j ⊆ W : vector space of global solutions corresponding to Vi,j

Provided that we can map local solutions to global solutions, finding a
combination amounts to finding a vector space intersection:

W1,j1 ∩W2,j2 ∩ · · · ∩Wn,jn 6= {0}

10 / 28



Abstract linear algebra problem

Let W be a vector space of dimension r. We are given n decompositions
of W as a direct sum of ℓ ≤ r subspaces:

W1,1 ⊕ W1,2 ⊕ . . . ⊕ W1,ℓ = W
W2,1 ⊕ W2,2 ⊕ . . . ⊕ W2,ℓ = W
...

...
...

...
Wn,1 ⊕ Wn,2 ⊕ . . . ⊕ Wn,ℓ = W

We want to find all tuples j = (j1, . . . , jn) ∈ {1, . . . , ℓ}n such that
Wj := W1,j1 ∩W2,j2 ∩ · · · ∩Wn,jn 6= {0}.

Lemma

There are at most dimW = r such tuples.

11 / 28



Finding all combinations

Exponential-time algorithm:

12 / 28



Finding all combinations

Exponential-time algorithm:

13 / 28



Finding all combinations

Exponential-time algorithm:

14 / 28



Finding all combinations

Polynomial-time algorithm:

15 / 28



Finding all combinations

Polynomial-time algorithm:

16 / 28



Finding all combinations

Polynomial-time algorithm:

17 / 28



Finding all combinations

Polynomial-time algorithm:

18 / 28



Finding all combinations

Polynomial-time algorithm:

19 / 28



Finding all combinations

Polynomial-time algorithm:

20 / 28



Complexity of the combination algorithm

Proposition

The combination algorithm performs no more than O(nr4) field
operations. In particular, the number of operations is polynomial

in both n and r.

It is easy to prove the weaker bound O(nr5): by the previously stated
lemma, we perform Gaussian elimination at most O(nr2) times.

21 / 28



Mapping local solutions to global solutions

As the global solution space W , we take the solutions of Py = 0 in a
neighborhood of some ordinary (nonsingular) point z0.

A vector in W can be represented by the numerical values











y(z0)
y′(z0)

...

y(r−1)(z0)











22 / 28



Analytic continuation

z0

z1
z2

z3

z4

We use analytic continuation to extend local solutions from each
singular point zi, 1 ≤ i ≤ n, to the common evaluation point z0.

23 / 28



Technical considerations

Analytic continuation provides an appropriate linear map Vi → W .

There are several technical points:

Enough information is preserved

We use resummation theory to interpret divergent power series as
analytic functions

We make some arbitrary but fixed choice of branch cuts

24 / 28



Numerical analytic continuation

We represent vectors in W by numerical approximations.

ŷ ∈ Vi,j: local solution at zi

y: analytic continuation of ŷ

Yε(z0) ∈ Q[i]r: numerical approximation of Y = (y, y′, . . . , y(r−1)) at z0

Using the algorithm of van der Hoeven for numerical evaluation of D-finite
functions, for every ŷ and every ε > 0, we can compute a Yε(z0) with

‖Y (z0)− Yε(z0)‖ < ε.

25 / 28



Numerical linear algebra

R: true rank of matrix

S ≤ R: computed rank using interval Gaussian elimination

At sufficiently high precision, S = R.

Possible outcomes of numerical intersection test:

If S is maximal, then there is certainly no intersection.

If S is not maximal, then either:
◮ There is an intersection, or
◮ the precision is insufficient.

We cannot tell, so we include the combination to be safe.

We never incorrectly discard a combination. At worst, too many
combinations can get through. Possible strategy: restart with increased
precision if there are more than 2r combinations.

26 / 28



Efficiency

We do not know the necessary precision in advance. In particular, we
cannot guarantee that the complexity really is polynomial.

Heuristically, we expect a low numerical precision to be sufficient.

Numerical approximations are only used to determine which exponential
parts to combine, not to compute output coefficients (which may be
huge).

27 / 28



Future work

Implement the algorithm and evaluate its efficiency in practice.

Combine with other strategies (e.g. Cluzeau and van Hoeij) for
eliminating combinations.

Investigate using Miller’s algorithm to discard divergent local
solutions that cannot correspond to hyperexponential solutions.

28 / 28


