Finding Hyperexponential Solutions of Linear ODEs by Numerical Evaluation

Fredrik Johansson*1 Manuel Kauers*1 Marc Mezzarobba*1,2

*RISC-Linz

ISSAC 2013, Boston, MA

¹ Supported by the Austrian Science Fund (FWF) grant Y464-N18 ² UMR 5668 CNRS – ENS Lyon – Inria – UCBL

Linear ODEs

Consider a linear differential operator

$$P = p_r D^r + p_{r-1} D^{r-1} + \ldots + p_1 D + p_0$$

where

•
$$D = \frac{d}{dx}$$

- $p_k \in C[x]$
- ${\, \bullet \, C \,}$ is an algebraically closed, computable subfield of $\mathbb C$

We want to find the hyperexponential solutions of Py = 0.

Hyperexponential solutions

A solution y of the equation Py = 0 is called **hyperexponential** if

$$\frac{Dy}{y} \in C(x).$$

Equivalently, y is hyperexponential iff

$$y = \exp(\int v), \quad v \in C(x).$$

Examples:
$$\frac{5x+1}{3x+5}$$
, $\sqrt{x+1}$, $(x+1)^{\sqrt{2}} \exp\left(\frac{x^9}{x-1}\right)$

Exponential and rational parts

Finding a hyperexponential solution h is easy if we know its **exponential** part ($\approx h$ up to multiplication by a rational function):

$$h = \exp\left(\frac{1}{1-x}\right) \frac{(x+1)^2}{(x+2)(x+3)}$$

Make the ansatz $h = \exp\left(\frac{1}{1-x}\right)u$ and look for rational solutions u.

Finding rational solutions is **easy**. The difficulty is to find the possible exponential parts.

Local solutions

For each $z \in C \cup \{\infty\}$ the equation Py = 0 has a basis of r linearly independent (formal) local solutions.

The local solutions are generalized power series in

$$\tilde{x} = \begin{cases} x - z & \text{if } z \neq \infty \\ 1/x & \text{if } z = \infty \end{cases}$$

For each given z, such a basis is **easy to compute**.

Exponential parts of local solutions

A general local solution:

$$y(\tilde{x}) = \tilde{x}^{\alpha} \exp\left(u(\tilde{x}^{-1/s})\right) \sum_{k=0}^{m} \log(\tilde{x})^{k} b_{k}(\tilde{x}^{1/s})$$

• $\alpha \in C$

•
$$u$$
 a polynomial, $u(0) = 0$

- $s \in \mathbb{N}$
- b_k a power series

The (local) exponential part of y is the factor $\tilde{x}^{\alpha} \exp(u(\tilde{x}^{-1/s}))$, modulo integer shifts of α .

Combining exponential parts

At each singular point $z_1, \ldots, z_n \in C \cup \{\infty\}$, the exponential part of a hyperexponential solution h must match **exactly one** of the exponential parts among the local solutions.

Singularity z_i	Exponential part 1	Exponential part 2	
$z_1 = 0$	$\sqrt{x}\exp\left(\frac{1}{x}\right)$	\sqrt{x}	
$z_2 = 1$	$\exp\left(\frac{1}{1-x}\right)$	1	
$z_3 = \infty$	\sqrt{x}	$\exp(x)$	

Example: $h = (1 - x)\sqrt{x} \exp\left(\frac{1}{x}\right)$ is described by the tuple (1, 2, 1)

The combination problem

At each singular point z_i , denote the local exponential parts by $E_{i,1}, \ldots, E_{i,\ell_i}$, $\ell_i \leq r$.

Combination problem

Find all tuples $\mathbf{j} = (j_1, \ldots, j_n)$ such that $E_{1,j_1}, \ldots, E_{n,j_n}$ are the exponential parts of a hyperexponential solution.

There can be at most r such tuples.

Brute force: r^n possibilities (exponential time).

Our algorithm

We use **analytic continuation** to reduce the combination problem to a **linear algebra problem**.

We have to test only a polynomial number of combinations.

A different approach to eliminating combinations (using modular techniques) is given by Cluzeau and van Hoeij (2004). They do not prove that their method leaves a polynomial number of combinations.

Reducing the problem to linear algebra

 V_i : vector space of all **local** solutions at z_i $V_{i,j} \subseteq V_i$: vector space of local solutions at z_i with exponential part $E_{i,j}$

W: vector space of all **global** solutions $W_{i,j} \subseteq W$: vector space of global solutions corresponding to $V_{i,j}$

Provided that we can map local solutions to global solutions, finding a combination amounts to **finding a vector space intersection**:

$$W_{1,j_1} \cap W_{2,j_2} \cap \dots \cap W_{n,j_n} \neq \{0\}$$

Abstract linear algebra problem

Let W be a vector space of dimension r. We are given n decompositions of W as a direct sum of $\ell \leq r$ subspaces:

We want to find all tuples $\mathbf{j} = (j_1, \dots, j_n) \in \{1, \dots, \ell\}^n$ such that $W_{\mathbf{j}} := W_{1,j_1} \cap W_{2,j_2} \cap \dots \cap W_{n,j_n} \neq \{0\}.$

Lemma

There are at most $\dim W = r$ such tuples.

Exponential-time algorithm:

Exponential-time algorithm:

Exponential-time algorithm:

Complexity of the combination algorithm

Proposition

The combination algorithm performs no more than $O(nr^4)$ field operations. In particular, the number of operations is polynomial in both n and r.

It is easy to prove the weaker bound $O(nr^5)$: by the previously stated lemma, we perform Gaussian elimination at most $O(nr^2)$ times.

Mapping local solutions to global solutions

As the global solution space W, we take the solutions of Py = 0 in a neighborhood of some ordinary (nonsingular) point z_0 .

A vector in W can be represented by the numerical values

$$\begin{bmatrix} y(z_0) \\ y'(z_0) \\ \vdots \\ y^{(r-1)}(z_0) \end{bmatrix}$$

Analytic continuation

We use **analytic continuation** to extend local solutions from each singular point z_i , $1 \le i \le n$, to the common evaluation point z_0 .

Technical considerations

Analytic continuation provides an appropriate linear map $V_i \rightarrow W$.

There are several technical points:

- Enough information is preserved
- We use resummation theory to interpret divergent power series as analytic functions
- We make some arbitrary but fixed choice of branch cuts

Numerical analytic continuation

We represent vectors in W by **numerical approximations**.

- $\hat{y} \in V_{i,j}$: local solution at z_i
- y: analytic continuation of \hat{y}

 $Y_{arepsilon}(z_0)\in \mathbb{Q}[i]^r$: numerical approximation of $Y=(y,y',\ldots,y^{(r-1)})$ at z_0

Using the algorithm of van der Hoeven for numerical evaluation of D-finite functions, for every \hat{y} and every $\varepsilon > 0$, we can compute a $Y_{\varepsilon}(z_0)$ with

$$\|Y(z_0) - Y_{\varepsilon}(z_0)\| < \varepsilon.$$

Numerical linear algebra

- R: true rank of matrix
- $S \leq R$: computed rank using interval Gaussian elimination
- At sufficiently high precision, S = R.

Possible outcomes of numerical intersection test:

- If S is maximal, then there is certainly no intersection.
- If S is not maximal, then either:
 - There is an intersection, or
 - the precision is insufficient.
 - We cannot tell, so we include the combination to be safe.

We **never incorrectly discard a combination**. At worst, too many combinations can get through. Possible strategy: restart with increased precision if there are more than 2r combinations.

Efficiency

We do not know the necessary precision in advance. In particular, we cannot guarantee that the complexity really is polynomial.

Heuristically, we expect a low numerical precision to be sufficient.

Numerical approximations are only used to determine which exponential parts to combine, **not** to compute output coefficients (which may be huge).

Future work

- Implement the algorithm and evaluate its efficiency in practice.
- Combine with other strategies (e.g. Cluzeau and van Hoeij) for eliminating combinations.
- Investigate using Miller's algorithm to discard divergent local solutions that cannot correspond to hyperexponential solutions.