
Computing special functions using integral
representations

Fredrik Johansson

Certified and Symbolic-Numeric Computation
ENS Lyon

May 25, 2023

1 / 30

Introduction

Numerical integration is a classical and powerful technique for
computing special functions like

Γ(s, z) =

∫ ∞

z
ts−1 e−t dt.

Requirements:

▶ I want rigorous error bounds

▶ Parameters may be inexact (s = [0.3± 10−13])

▶ I want to easily obtain, say, 10 – 10,000 digits

▶ I want robust code, suitable for general-purpose math software

In this talk, I will discuss general principles and describe where and
how integration is currently used in the Arb library.

2 / 30

Why use integration?

Two ways to compute functions defined by integrals:

1. Use numerical integration (quadrature)

2. Use series expansions derived from integral representations∫
f (t)dt = f (t0) · [C0 + C1 + . . .]

Usually (2) leads to faster algorithms (for example, the terms have
nice recurrence relations).

However, (1) may be much more straightforward, considering error
bounds, cancellation, divergence, branch cuts, . . .

3 / 30

Example: one of Carlson’s elliptic integrals

RJ(a, b, c , d) =
3

2

∫ ∞

0

dt√
a+ t

√
b + t

√
c + t (d + t)

Expansion algorithm: defining λ =
√
a
√
b +

√
b
√
c +

√
a
√
c , iterate

RJ(a, b, c , d) = 1
4RJ

(
a+λ
4 , b+λ

4 , c+λ
4 , d+λ

4

)
+ arctangent

until a ≈ b ≈ c ≈ d . Then RJ(a, a+ ε, . . .) = hypergeometric series.

This is only valid for certain parameters.
For example, it is sufficient that Re(a),Re(b),Re(c),Re(d) > 0.

Arb 2.17 (always using the above algorithm):
RJ(−1− 0.5i ,−10− 6i ,−10− 3i ,−5 + 10i) ≈ 0.345986 + 0.399031i

Arb 2.18 (using integration when the preconditions do not hold):
RJ(−1− 0.5i ,−10− 6i ,−10− 3i ,−5 + 10i) ≈ 0.128471 + 0.102176i

4 / 30

Example: one of Carlson’s elliptic integrals

RJ(a, b, c , d) =
3

2

∫ ∞

0

dt√
a+ t

√
b + t

√
c + t (d + t)

Expansion algorithm: defining λ =
√
a
√
b +

√
b
√
c +

√
a
√
c , iterate

RJ(a, b, c , d) = 1
4RJ

(
a+λ
4 , b+λ

4 , c+λ
4 , d+λ

4

)
+ arctangent

until a ≈ b ≈ c ≈ d . Then RJ(a, a+ ε, . . .) = hypergeometric series.

This is only valid for certain parameters.
For example, it is sufficient that Re(a),Re(b),Re(c),Re(d) > 0.

Arb 2.17 (always using the above algorithm):
RJ(−1− 0.5i ,−10− 6i ,−10− 3i ,−5 + 10i) ≈ 0.345986 + 0.399031i

Arb 2.18 (using integration when the preconditions do not hold):
RJ(−1− 0.5i ,−10− 6i ,−10− 3i ,−5 + 10i) ≈ 0.128471 + 0.102176i

4 / 30

Example: incomplete beta function with large parameters
A user reported that Arb struggles to evaluate
Ix(a, b) =

1
B(a,b)

∫ x
0 ta−1(1− t)b−1, x = 4999

10000 , a = b = 105.

Arb 2.21 (only using series expansions):

prec = 64: [+/- inf]

prec = 128: [+/- inf]

prec = 256: [+/- inf]

...

prec = 65536: [+/- inf]

prec = 131072: [+/- inf]

prec = 262144: [0.46436508135202051998898147610...]

Arb 2.22 (using numerical integration in appropriate cases):

prec = 64: [0.4643650813520 +/- 4.92e-14]

prec = 128: [0.46436508135202051998898147610644 +/- 3.74e-33]

5 / 30

General principles

Choice of integral and path:

▶ Handling singularities

▶ Avoiding cancellation / oscillation

Choice of integration algorithm:

▶ Gaussian quadrature

▶ Trapezoidal and double exponential quadrature

▶ Taylor series

Implementation issues:

▶ Error bounds, stability, efficiency, code complexity

6 / 30

Gauss-Legendre quadrature

If f is analytic with |f (z)| ≤ M on an ellipse E with foci −1, 1 and
semi-axes X ,Y with ρ = X + Y > 1, then∣∣∣∣∣

∫ 1

−1
f (x)dx −

n∑
k=1

wk f (xk)

∣∣∣∣∣ ≤ M

ρ2n
· 4.27

1− ρ−1
.

X = 1.25,Y = 0.75, ρ = 2.00 X = 2.00,Y = 1.73, ρ = 3.73

There is a rigorous, arbitrary-precision, adaptive implementation
in Arb since 2017, accepting “black box” integrands f .

7 / 30

Implementation in Arb: bounds and adaptivity

▶ To bound |f (z)| on E , we may evaluate f on a rectangle R.
This can be done in low-precision interval arithmetic.

▶ Note: it suffices to bound |f (z)| on the contour C .

▶ The integrand must check “f (z) is analytic on R”.

▶ Arb tests a set of semi-axes X ∼ 2k |b − a| and degrees
n = 1, 2, 4, 6, 8, . . . ∼ 2ℓ/2, choosing the smallest n such that
|In − I | < εtol. If no good (X , n) is found, [a, b] is bisected.

8 / 30

Adaptive subdivision

∫ 1

0

sech2(10(x − 0.2)) + sech4(100(x − 0.4)) + sech6(1000(x − 0.6)) dx

Arb chooses
31 subintervals,

narrowest is 2−11

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Complex ellipses
used for bounds

Red dots = poles

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

9 / 30

Magnitude bound gotchas

Wrapping and dependency problems

▶ Evaluating expressions like f (z) = g(z)/h(z) or g(z)− h(z)
naively in interval arithmetic can give extremely poor upper
bounds, resulting in slow convergence

▶ Solution: when the input z is given by a wide interval, use a
short Taylor expansion or rewrite symbolically

▶ Use exp(−z) instead of 1/ exp(z)

Troublesome branch cuts

▶ Near (−∞, 0), replace log(z) → log(−z)− πi , etc.

10 / 30

Tails and endpoint singularities

If |a|, |b| or |f | → ∞, we can no longer get automatic error
bounds out of Gauss-Legendre quadrature + interval arithmetic.

Solutions:

▶ Truncation
∫∞
0 f (x)dx ≈

∫ N
ε f (x)dx

0 N ∞

Exponential decay

0 ε N ∞

Algebraic blow-up/decay

▶ Gauss-Jacobi, Gauss-Laguerre, etc.

Either way, manual or symbolic preprocessing is needed.

11 / 30

Gauss’s main competitor: the trapezoidal rule

∫
|z|=1

f (t)dt ≈ 2π

N

N∑
k=1

f (e2πik/N)

|IN − I | ≤ 4πM

rN − 1

M = max
1/r<|z|<r

|f (z)|

∫ ∞

−∞
f (t)dt ≈ h

∞∑
k=−∞

f (hk)

|Ih − I | ≤ 2M

e2πa/h − 1

M = max
|y |≤a

∫ +∞

−∞
|f (x + iy)|dx

For other contours and bounds, see:

▶ Trefethen and Weideman, The exponentially convergent trapezoidal rule, 2014

▶ P. Molin, L’intégration numérique par la méthode double-exponentielle, 2016

12 / 30

Double exponential (tanh-sinh) quadrature

What is the optimal rate of decay for using the trapezoidal rule to
compute

∫∞
−∞ f (t)dt? Under certain assumptions,

|f (t)| < exp(−|t|) =⇒ |IN − I | < exp(−cN1/2)

|f (t)| < exp(− exp(|t|)) =⇒ |IN − I | < exp(−cN/ log(N))

This leads, for example, to the “tanh-sinh rule”∫ 1

−1
f (t)dt =

∞∑
k=−∞

wk f (xk), xk = tanh(π2 sinh(kh)).

This method is remarkably robust for functions with endpoint
singularities, e.g. f (t) = (1− t)α(1 + t)βg(t).

13 / 30

Disadvantages of double exponential quadrature

▶ Less efficient than Gauss-Legendre on compact intervals.

▶ Not locally adaptive: efficiency deteriorates with singularities
close to the path.

▶ Can be tricky to find a suitable variable transformation
(passing through saddle points, avoiding singularities, etc.).

▶ Can be tricky to bound the error.

For these reasons, I am not using the double exponential method
anywhere in Arb. However, there are certainly situations where it
would be useful (some examples later).

14 / 30

Implementation example: hypergeometric functions

Arb uses numerical integration in some cases to compute
hypergeometric functions via the representations

1F1(a, b, z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0
eztta−1(1− t)b−a−1dt,

U(a, b, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt,

2F1(a, b, c , z) =
Γ(a)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt.

By extension: modified Bessel functions Iν(x),Kν(x) and
incomplete gamma and beta functions Γ(s, x), γ(s, x), Ix(a, b).

Currently only real parameters are considered.

15 / 30

Practical issue: finding a good tolerance

Consider the 1F1 integral: I =
∫ 1
0 exp(g(t))dt where

g(t) = zt + (a− 1) log(t) + (b − a− 1) log(1− t)

g ′(t) = t + a−1
t − b−a−1

1−t

0 1
0

2
1e 140

Figure: g(t), a = 100, b = 1000, z = 10

If the peak is narrow, numerical integration with a relative
tolerance becomes inefficient. We can use I ≈ exp(g(tmax)) to find
an accurate absolute tolerance.

16 / 30

Practical issue: local error bounds

Evaluating g(R) naively gives poor bounds. Ditto for
g(m) + g ′(R)(R −m) and . . .+ 1

2g
′′(m)(R −m)2.

What I found to work is first-order Taylor expansions on C , using

Re(g(u + vi)) = h(u, v),

d

du
h(u, v) = z +

u(a− 1)

u2 + v2
+

(u − 1)(b − a− 1)

v2 + (1− u)2
, etc.

Using machine-precision interval arithmetic + a few subdivisions,
this works well up to a, b, z ≈ 1015.

17 / 30

Implementation example: Laurent coefficients of ζ(s)

γn = − π

2(n + 1)

∫ ∞

−∞

(
log

(
1
2 + ix

))n+1

cosh2(πx)
dx

γ10100 ≈ 3.187 · 1023463942922772540809493678383990911609034476898698373852057791115792156640521582344171254175433483694

Figure: The integrand with n = 500

Piecewise linear path through the saddle point + integrand bounds
of the type exp(g(m ± r)) ≤ exp(g(m)) exp(g ′(m)r + Cr2).

18 / 30

What about something more complex? Bessel functions?
For Re(z) > 0,

Jν(z) =
1

2πi

∫ −∞+iπ

−∞−iπ
exp(g(t))dt, g(t) = −z sinh(t) + νt.

Figure: sgn(g(t)) on t ∈ [−20, 20] + [−10, 10]i ; ν = 200 + 100i , z = 50− 20i

All cases of Jν(z), Yν(z), Iν(z), Kν(z), H
(1)
ν (z), H

(2)
ν (z) can be

expressed using similar integrals.

19 / 30

What about something more complex? Bessel functions?

There is a lot of literature on asymptotic expansions, but it seems
difficult to cover all (large, complex) combinations of ν, z .

In principle, it should be possible to cover all cases using numerical
integration with an approximate steepest-descent contour.

There is a sketch of an algorithm in Jentschura and Lötstedt
(2012), but it appears to be buggy.

Counterexample: ν = 200 + 100i , z = 50− 20i . Here J & L
seemingly want to go through both saddle points

▶ t+ ≈ +2.12 + 0.86i , | exp(g(t+))| ≈ 6.47 · 10+60

▶ t− ≈ −2.12− 0.86i , | exp(g(t−))| ≈ 1.55 · 10−61

but Jν(z) ≈ 1.33 · 10−63 + 3.89 · 10−63i .

20 / 30

What about something more complex? Bessel functions?

The integrand already has double exponential decay, so the
trapezoidal rule is useful at least in some cases, e.g.

Kν(x) =

∫ ∞

0
e−x cosh(t) cosh(νt)dt.

21 / 30

Implementation example: the Lerch transcendent

Φ(z , s, a) =
∞∑
n=0

zn

(n + a)s
, |z | < 1

ζ(s) = Φ(1, s, 1), ζ(s, a) = Φ(1, s, a), Lis(z) = zΦ(z , s, 1)

Φ(z, 1 + 3i , 2− i) on
s ∈ [−5, 5] + [−5, 5]i

Φ(−0.75i , s, 1− 0.5i) on
s ∈ [−20, 20] + [−20, 20]i

New function in Arb 2.23. Algorithms for ζ(s) etc. can be
generalized to Φ(z , s, a), but this would have been a lot of work.

22 / 30

Analytically continuing Φ(z , s, a)

For Re(a) > 0 and z ̸∈ [1,∞) (Laplace integral):

Φ(z , s, a) =
1

Γ(s)

∫ ∞

0

ts−1e−at

1− ze−t
dt, s ∈ {1, 2, 3, . . .}

Hankel integral:

Φ(z , s, a) = −Γ(1− s)

2πi

∫
H

(−t)s−1e−at

1− ze−t
dt, s ̸∈ {1, 2, 3, . . .}

To remove the restriction on a, we can use

Φ(z , s, a) = znΦ(z , s, a+ n) +
n−1∑
k=0

zk

(k + a)s
.

To remove the restriction on z , we can change the path.

23 / 30

Avoiding poles: the Laplace integral

The integrand has poles at t = log(z) + 2πik .

24 / 30

Avoiding poles: the Hankel integral

The integrand has poles at log(z)+2πik and a singularity at t = 0.

Note: to avoid the branch cut for (−t)s−1 in the Gauss-Legendre
bounds, we use ts−1 for Re(t) > 0 and (−t)s−1 for Re(t) < 0

25 / 30

Avoiding poles: the Hankel integral

If a pole is too close to the real axis (yellow dot in the figure),
integrate around it and subtract the residue.

26 / 30

Large parameters: the Riemann-Siegel formula

I have made no attempt to optimize Φ(z , s, a) for large
parameters. In general, this looks complicated.

The most interesting case is when Im(s) → ∞. Here, we could use
(various versions of) the Riemann-Siegel formula. For the classical
case of ζ(s) it involves the following:

ζRS(s) =
N∑

n=1

1

ns
+

∫
N↙N+1

z−seπiz
2

eπiz − e−πiz
dz , N = ⌊

√
Im(s)/(2π)⌋

N N + 1

27 / 30

Large parameters: the Riemann-Siegel formula

Usually one derives an asymptotic series for the integral. There is
an implementation for ζ(s) in Arb, but the terms and error bounds
are quite messy (Arias de Reyna, 2011).

Recently, Sandeep Tyagi has found1 an effective way to apply
double exponential quadrature directly to the integral.

This method allows computing ζ(s), L(s, χ), Φ(z , s, a) etc. with
arbitrary precision and is remarkably simple and efficient. It
remains to work out complete, rigorous error bounds.

1Sandeep Tyagi (2022), Double Exponential method for Riemann Zeta,
Lerch and Dirichlet L-functions, https://arxiv.org/abs/2203.02509

28 / 30

https://arxiv.org/abs/2203.02509

Taylor series and the bit-burst algorithm

Using high-order Taylor expansions to integrate
∫ b
a f (t)dt is most

useful for holonomic integrands f , where the “bit-burst algorithm”
can be applied to compute D digits in time D1+o(1).

Arb uses the bit-burst algorithm for the following functions:

▶ Elementary functions

▶ erf(z) = (2/
√
π)

∫ z
0 e−t2 dt, erfc(z), erfi(z)

▶ Γ(s, z) in some cases

▶ The dilogarithm Li2(z) = −
∫ z
0 log(1− t)/t dt

▶ Indirectly, Dirichlet L-functions for special values

For general holonomic functions, see Marc Mezzarobba’s
implementation in ore algebra.

29 / 30

Wishlist

▶ Optimizations for “low” precision (around machine precision).

▶ Automatic code generation, symbolic precomputation.

▶ Double exponential quadrature with semi-automatic error
bounds.

▶ Robust implementations of standard integrals (e.g. Bessel
functions) for large complex parameters.

30 / 30

