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Abstract

We examine asymptotic and numerical aspects of the Dirac equation, with special
attention to the Maxwell-Dirac (MD) system that arises when the time-dependent Dirac
equation is coupled to Maxwell’s equations for the electromagnetic field. In particular, we
examine the nonrelativistic limit c→ ∞ where the full MD system can be approximated
by the simpler Schrödinger-Poisson (SP) system by eliminating the singular dependence
on c.

We give a detailed description of an efficient FFT-based pseudospectral method for
numerical simulation of the MD and SP systems, and provide source code for an imple-
mentation in Matlab. Simulation results are shown for some test problems, comparing
the MD system for large values of c with the asymptotic SP system and verifying the
accuracy of the solver.
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1 Background and theory

The Dirac equation, which is one of the staples of relativistic quantum mechanics, presents
many interesting mathematical challenges. In this thesis, we will look at the so-called
Maxwell-Dirac equations, with particular attention to the nonrelativistic limit where the
speed of light c formally tends to infinity.

It is generally impossible to solve the Dirac equation exactly, so it must be studied using
asymptotic methods or through numerical simulations. A prerequisite for performing numeri-
cal simulations of the nonrelativistic limit is to find an algorithm that is efficient and accurate
in the asymptotic regime, a problem solved recently by Huang et al. in [3]. Before describing
their algorithm in detail, we shall introduce the Dirac equation and provide some theoretical
analysis of its asymptotics.

The Dirac equation constitutes a vast topic, most of which is outside the scope of this text.
A more comprehensive general account of the Dirac equation can be found in the monograph
by Thaller [9]; it is also covered in many advanced physics textbooks (see e.g. [8]). For our
purposes, it will be sufficient to view the Dirac equation as an extension of the Schrödinger
equation without studying issues of its physical interpretation in much more depth.

1.1 Introduction to the Dirac equation

Paul Dirac’s discovery of the Dirac equation for the electron1 in 1928 represented one of the
first fruitful attempts to combine quantum mechanics with special relativity. Perhaps most
significantly, Dirac’s theory predicted the existence of antiparticles – positrons – which were
detected experimentally four years later.

The problem that leads to the Dirac equation is to find a relativistically correct quantum
mechanical equation for the electron. Quantum mechanics assumes that the state of a particle
(or some more general system) is described by a complex-valued wavefunction ψ(t, x), and
that classical quantities must be supplanted by operators such as the energy operator

E = i~
∂

∂t

and the momentum operator

p = −i~∇.

The fundamental equation of quantum mechanics, postulated to govern the behavior of any
physical system, is the Schrödinger equation

Eψ = Hψ (1)

1The Dirac equation has other applications, but for simplicity, we assume for the remainder of this text
that it describes electrons.
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where H is the Hamiltonian operator corresponding to the system. The Hamiltonian essen-
tially describes the total energy of the system as the sum of kinetic and potential energy, and
for a single (massive, spinless, nonrelativistic) particle takes the form

H = − p2

2m
+ V. (2)

Here ~ is the normalized Planck constant, m is the mass of the particle, and V is potential
energy due e.g. to an external electromagnetic or gravitational field. Note that in (1) and
(2), the symbols p and E denote the previously-defined operators. The measurable quantities
“momentum” and “energy” actually correspond to eigenvalues of these operators, and phe-
nomena such as quantization and the Heisenberg uncertainty principle are consequences of
this operator formalism.

Returning to the non-quantum world where E and p are just numbers, the relativistic relation
between energy and momentum reads E2 = c2p2 + m2c4. Directly inserting the quantum
operator versions of E and p into this equation gives the Klein-Gordon equation

1

c2
∂2

∂t2
ψ −∇2ψ +

m2c2

~2
ψ = 0, (3)

which is useful in its own right but turns out not to satisfactorily solve the problem which
Dirac sought to address. One of the issues is that the electron is known (from nonrelativistic
quantum mechanics) to have spin. The Klein-Gordon equation does not contain any infor-
mation about spin, so it cannot provide a complete description of the electron. It is also not
first-order with respect to the time derivative, which is required for the mathematics of quan-
tum mechanics (the function ψ in the Klein-Gordon equation cannot directly be interpreted
as a wavefunction).

Dirac’s approach to obtain a first-order, spin-aware version of the Schrödinger equation whose
solution also satisfies the Klein-Gordon equation consisted of replacing the scalar wavefunction
with a vector wavefunction. Then H should be a matrix operator. For algebraic reasons, it
turns out that the wavefunction must be four-dimensional, i.e.

ψ =




ψ1

ψ2

ψ3

ψ4


 ∈ C

4.

The four-dimensional complex-valued wave function is called a Dirac spinor. The Dirac
Hamiltonian can be written in terms of 4-by-4 matrices. Explicitly, the free Dirac operator
or free Dirac Hamiltonian is given by

H0 ≡ D0 ≡ cα · p+ βmc2 = −i~c α · ∇ + βmc2 (4)

where α = (α1, α2, α3) and β, αk are 4 × 4 matrices given by
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β =

(
I2 0
0 −I2

)
=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 (5)

αk =

(
0 σk

σk 0

)
; σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (6)

The σk matrices are also known as the Pauli matrices and occur in the nonrelativistic
quantum-mechanical description of particles with spin. The need for a four-dimensional
system is a consequence of the spin dependence in three-dimensional space: when m = 0,
or when the particle is isolated to one or two spatial dimensions, the Dirac operator can be
reduced to two dimensions and represented using Pauli matrices.

The wavefunction in the Schrödinger equation, or rather the wavefunction’s squared magni-
tude, is usually interpreted as describing the location of a particle in space as a probability
distribution. The probability density for the Dirac wavefunction (understood to represent an
electron) is the pointwise quantity

|ψ(x)|2 =

4∑

k=1

|ψk(x)|2 (7)

and the total probability to find the particle in some region S ⊆ R3 is

P (S) = ‖ψ‖2
L2(S) =

∫

S
|ψ(x)|2dx (8)

assuming that the wavefunction is normalized so that P (R3) = 1. With this interpretation, the
Schrödinger equation (1) with the Dirac Hamiltonian defines how the Dirac particle evolves,
i.e. how the distribution of probability density moves or spreads in space as time progresses.

1.2 Spectrum of the Dirac operator

Besides being a time-dependent equation, (1) can be understood an eigenvalue equation where
the symbol E denotes the possible scalar energy eigenvalues that may be assumed by the wave-
function. An interesting property of the Dirac equation distinguishes it from the ordinary
Schrödinger equation: it can be shown that the spectrum of the free Dirac operator, Γ(H0), is
absolutely continuous and is the union of the intervals (−∞,−mc2] and [mc2,∞). The appar-
ent paradox that a Dirac electron may have negative energy can be resolved by introducing
antiparticles.

When p → 0, the Dirac equation reduces to an “upper” and a “lower” part with respective
energies ±mc2 (the relativistic rest energy of a particle with mass m). The upper part of the
wavefunction
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ψ+ =




ψ1

ψ2

0
0




is usually interpreted as representing an electron, while the lower part

ψ− =




0
0
ψ3

ψ4




is interpreted as representing a positron. The fact that the lower energy is negative accounts
for the interpretation of the positron as an antiparticle. In general, however, all components
of ψ are nonzero and the particle described by the Dirac equation must be understood as a
complex superposition of an “electronic” and a “positronic” part. The 2-spinors ψ+ and ψ−

are known as the Pauli spinors.

It is commonly accepted that the free Dirac equation describes a relativistic electron (or
rather an oscillating electron-positron field) in free space. Adding a potential V to the free
Dirac operator yields the Dirac equation in more general form,

Eψ = (H0 + V )ψ. (9)

The potential V can be a scalar V = ϕI4 or more generally a 4×4 matrix (to model magnetic
effects). For example, the electrostatic Coulomb potential VC with

ϕ =
C

|x|

is often used in the description of electronic orbits in point-nucleus atoms.

With a Coulomb potential VC as above, eigenvalues appear in the gap, i.e. Γ(H0 + VC) =
Γ(H0)∪{λk}∞k=1. These eigenvalues can accumulate either at −mc2 or at mc2, and correspond
to bound states of electrons or positrons. If we instead add a periodic potential Vper, Γ(H0 +
Vper) is purely absolutely continuous and consists of a countable set of disjoint intervals
separated by gaps.

Much is unknown about the spectrum of the Dirac Hamiltonian with a more general po-
tential, such as a sum of a Coulomb potential and a magnetic potential. Even proving the
existence of the eigenvalues in a Coulomb potential is a delicate matter since the Dirac oper-
ator is unbounded and therefore no minimization principle exists (one way to overcome this
deficiency is to work with the Pauli spinors). Questions about the existence and distribution
of eigenvalues of Dirac operators, as well as numerical methods for finding eigenvalues, are
subject of ongoing research (see e.g. [5]).
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1.3 Time evolution and the Maxwell-Dirac equations

The Schrödinger equation can be interpreted both as an eigenvalue equation for the possible
energy values of the Hamiltonian, and as a time-evolution differential equation for the wave-
function. In the remainder of this text, we will mainly be concerned with the latter point of
view. In more detail, the Schrödinger equation states that a physical system described by a
wavefunction ψ = ψ(t) = ψ(t, x) and Hamiltonian operator H evolves in time as

i~
∂

∂t
ψ(t) = Hψ(t). (10)

Given an initial configuration ψ(0, x) = ψ0, the solution can be represented exactly as

ψ(t) = e−iHt/~ψ0 (11)

where eA denotes the exponential function of the operator A, given formally by the power
series

eA =
∞∑

k=0

Ak

k!
i.e. eAψ =

∞∑

k=0

Ak

k!
ψ. (12)

In order for this expression to be meaningful, some restrictions must be imposed on A to
guarantee convergence and that the limit operator resides in some suitable space. If A is an
element of a (unital) Banach algebra B such as the space of n × n matrices over C, then eA

is also an element of B.

In quantum mechanics, it is always assumed that H is Hermitian (or self-adjoint). Under this
assumption, a theorem proved by Stone [7] states that the family of operators U(t) = e−iHt/~

are unitary, satisfy U(t1 + t2) = U(t1)U(t2), and are strongly continuous with respect to the
real parameter t. The continuity property implies that (11) gives the desired unique solution
of (10). The unitarity property is fundamental to the physics because it implies that the norm
‖ψ‖ of the wavefunction, i.e. the total probability of finding the system in some configuration
in space, is conserved in time.

Although (11) gives an elegant expression for the solution of the time-evolution problem,
evaluating the operator exponential is difficult. Direct application of the series (12) is often
impractical for qualitative analysis or computation when A is a differential or matrix operator.
When studying the Dirac equation in more detail, we will use the Fourier transform and
diagonalization (see appendix A) to overcome this difficulty.

The time-dependent version of the Dirac equation with a potential reads

i~
∂

∂t
ψ = (H0 + V )ψ. (13)

The free Dirac Hamiltonian H0 is self-adjoint (technically, essentially self-adjoint), so the free
Dirac equation has a well-defined solution per Stone’s theorem. The Dirac operator remains
self-adjoint with the addition of a potential, subject to some regularity conditions on the
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potential (see theorem 4.2 in [9]). For example, the Coulomb-Dirac Hamiltonian H0 + VC is
self-adjoint as long as the constant C is not too large.

In (13), V describes the electron’s interaction with an external electromagnetic field. A
more accurate description of the electron should account for its self-interaction due to the
electromagnetic field it generates. This can be accomplished by combining the Dirac equation
with Maxwell’s equations, giving the coupled Maxwell-Dirac (MD) system (in Lorentz gauge)

i~
∂

∂t
ψ =

(
−i~cα · ∇ +mc2β − qα · (A + Aex) + (V + Vex)

)
ψ (14)

(
1

c2
∂2

∂t2
− ∆

)
V =

1

4πǫ0
ρ

(
1

c2
∂2

∂t2
− ∆

)
A =

1

4πǫ0c
J

The first equation is the Dirac equation with the interaction of both an electric potential
(V ) and a magnetic vector potential (A) included. Here V denotes the self-consistent, i.e.
self-generated field while Vex denotes an externally applied field, and similarly with the the
magnetic potential. Here A = (A1, A2, A3) and J = (J1, J2, J3) consist of three scalar fields.

The densities ρ = q|ψ|2 and Jk = qc〈ψ,αkψ〉C4 = qcψ̄ · αkψ describe the flow of probability
density and current respectively. Above, ǫ0 denotes the permittivity of vacuum and q denotes
the particle charge.

Unlike the free Dirac equation or the Dirac equation with a (sufficiently well-behaved) external
potential, where Stone’s theorem applies, only partial results are known concerning well-
posedness, i.e. existence and uniqueness of solutions, of the Maxwell-Dirac equations.

1.4 The nonrelativistic limit

Two importantant asymptotic cases of the Dirac equation are the semiclassical limit ~ → 0
and the nonrelativistic limit c→ ∞. Roughly speaking, the semiclassical limit should recover
the description of a relativistic particle for which quantum effects are negligible, and vice
versa. Both limits are singular, which is to say that the equations become meaningless when
~ = 0 or c = ∞. Any asymptotic analysis must therefore begin by describing the singular
dependence of the problem on the limit parameter.

In fact, the singular asymptotics of the Maxwell-Dirac equations are well-studied and it is
known that the MD system can be described in terms of simpler systems in the aforementioned
limits. As c→ ∞, MD reduces to the Schrödinger-Poisson system, and the ~ → 0 limit gives
the relativistic Vlasov-Maxwell system. The combined limit leads to the Vlasov-Poisson
system. Details can be found in [4]. The semiclassical limit has also been investigated using
WKB techniques, for which see [6]. From here on, our concern will be the nonrelativistic
limit.

For mathematical analysis, it is convenient to eliminate the physical constants occurring in
the Maxwell-Dirac system by introducing dimensionless parameters. As in [3], we may use
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the two-parameter dimensionless version

iǫ
∂

∂t
ψ =

(
− iǫ
δ
α · ∇ +

1

δ2
β − α · (A + Aex) + (V + Vex)

)
ψ (15)

(
δ2
∂2

∂t2
− ∆

)
V = ǫ|ψ|2

(
δ2
∂2

∂t2
− ∆

)
Ak = ǫ〈ψ,αkψ〉

where ǫ→ 0 corresponds to the semiclassical limit and δ → 0 corresponds to the nonrelativistic
limit. In other words, ǫ = C1~ and δ = C2c

−1, where the constants C1 and C2 depend on the
units or reference length and time scales chosen.

A leading-order analysis of the nonrelativistic limit is straightforward. Starting from (15)
with ǫ = 1, and letting δ → 0, the term δ−2βψ dominates the right-hand side in the first line.
Since β is diagonal, the equation

i
∂ψ

∂t
=

1

δ2
βψ

has solution

ψ1,2(t) = e−it/δ2

ψ1,2(0)

ψ3,4(t) = e+it/δ2

ψ3,4(0).

This describes a wavefunction with rapid phase oscillation but whose probability density
remains static and whose components (ψ1, ψ2, ψ3, ψ4) do not interact with each other. As it
turns out, this heuristic argument correctly identifies the most rapid variation of the solution
depending on δ. When accounting for the remaining parts of the MD system, instead of
ψ1,2,3,4(0) the right-hand side should contain a more slowly-varying time-dependent function
that approximately solves the MD system with the δ−2βψ-term subtracted.

For a more precise analysis, we rewrite the first equation of (15), again with ǫ = 1, as

i
∂

∂t
ψ = (HT +HV )ψ (16)

where HT ≡ HT (δ) is the scaled free Dirac operator, while HV is the potential operator that
does not depend on δ. We also take the Fourier transform of HT , i.e.

HT =

(
1

δ

)
α · ξ +

1

δ2
β (17)

where ξ is a Fourier space coordinate (see appendix A.1), and
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HV = (V + Vex) − α · (A + Aex). (18)

Now HT is an ordinary 4 × 4 matrix, and can be diagonalized (see appendix A.2). Solving
the eigenvalue equation |HT − λI4| = 0 gives the eigenvalues (λ, λ,−λ,−λ) where

λ =
1

δ2

√
1 + δ2|ξ|2. (19)

Therefore, up to multiplication by two unitary operators P and P−1 which transform HT to
diagonal form, HT is equivalent to the diagonal operator

D = βλ (20)

and the series expansion
√

1 + x = 1 + 1
2x+ . . . gives

D = β

(
1

δ2
+

|ξ|2
2

)
+O(δ2) (21)

where the nonsingular term is the “ordinary Schrödinger equation Hamiltonian”

∓∆

2

with negative and positive sign taken for the upper two and lower two components of the
wavefunction respectively. We may next introduce the two respective subspace projection
operators

Πe/p =
1

2

(
I4 ±

δα · ξ + β√
1 + δ2|ξ|2

)
.

These operators project the wavefunction onto the respective subspace of positive and negative
energy, and inspection immediately shows that when δ → 0,

Πe →
(

I2 0
0 0

)

and

Πp →
(

0 0
0 I2

)

so the subspaces asymptotically correspond to the component subspaces (ψ1, ψ2, 0, 0) and
(0, 0, ψ3, ψ4).

We now combine the Dirac equation with the Maxwell equations. Formally letting δ → 0 in
the first of Maxwell’s equations in (15) gives Poisson’s equation for V , while the magnetic
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field turns out to behave as O(δ) and therefore this field can be dropped entirely in the
limit (this is due to a rather complicated cancellation effect). In summary, we obtain in the
Schrödinger-Poisson system

i
∂

∂t
φe = −∆

2
φe + (V + Vex)φe, (22)

i
∂

∂t
φp = +

∆

2
φp + (V + Vex)φp,

−∆V = |φe|2 + |φp|2.

Here the “electronic” and “positronic” components relate to those of the Maxwell-Dirac wave-
function as ψe,p → φe,p, δ → 0 where

ψe = eit/δ2

Πeψ

ψp = e−it/δ2

Πpψ

i.e. with the singular dependence on δ factored out. Up to the phase, we therefore also have
φe → (ψ1, ψ2) and φp → (ψ3, ψ4).

Although the derivation above is heuristic, the convergence of the Maxwell-Dirac system to
the Schrödinger-Poisson system can be formulated and proven rigorously. The interested
reader may consult [2].
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2 Numerical algorithms

The Maxwell-Dirac equations constitute a coupled system of hyperbolic partial differential
equations, presenting considerable difficulties for numerical algorithms and simulations. We
will here apply a version of the pseudospectral method, which is attractive for a large class of
PDEs due to providing high-order spatial accuracy and being relatively simple to formulate
and implement, even in three spatial dimensions.

2.1 Spectral methods

Suppose we are interested in solving a differential equation on some domain S. The idea of
a spectral method is to represent any occurring function f (the solution, initial data, etc.) as
the sum of a Fourier series

f(x) =

∞∑

k=0

ckφk(x) ≈ fN (x) =

N−1∑

k=0

ckφk(x) (23)

where

ck =
1

|S|

∫

S
f(x)φk(x)dx (24)

and where φk denote chosen basis functions. Besides the ordinary trigonometric or exponen-
tial Fourier basis functions, any suitable orthogonal set of simple basis functions for L2(S) can
be used (e.g. orthogonal polynomials), giving a generalized Fourier series. Spectral meth-
ods are also related to finite element methods which use “nearly-orthogonal” piecewise basis
functions.2

Using the representation (23)-(24) , the differential equation of interest can often be reduced to
a solvable algebraic equation involving the Fourier coefficients ck. Moreover, if f has suitable
properties, ‖f −fN‖ decreases very rapidly as N → ∞. In the case of ordinary Fourier series,
if f is periodic and has n-th derivatives, then |ck| decreases at least as rapidly as k−n when
k → ∞. If f is periodic and infinitely differentiable, the convergence order of the method is
thus “better than n-th order” for any finite n. This property makes spectral methods highly
accurate for certain classes of problems.

Any function, not necessarily periodic, can be approximated by a Fourier series, but the
use of the Fourier basis naturally imposes periodic boundary conditions on the solutions
of differential equations. To simulate a problem without periodicity, it is conventional to
choose an enlargened computational domain and initial data that decreases rapidly towards
the boundaries, for example Gaussian data.

We now assume that S is a finite symmetric interval, S = [−L/2, L/2] for which the ordinary
Fourier basis may be used. It is convenient to assume that N is even and re-index (23) as

2Spectral methods are sometimes considered a subset of finite element methods and called spectral finite
element methods.
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f(x) =

∞∑

k=−∞

ckφk(x) ≈ fN (x) =

N/2∑

k=−N/2+1

ckφk(x). (25)

where the basis functions may be written

φk(x) = e2πikx/L.

The pseudospectral method arises if we approximate (24) by a step sum over the uniformly
spaced grid (x0, x1, . . . , xN−1),

xk = −L
2

+
kL

N
.

It can be shown that this choice of step sum preserves the accuracy order of the method, i.e.
it is as good as using exact integration.3 Then, up to a normalization constant, the vector
(c0, c1, . . . , cN−1) is simply the discrete Fourier transform (DFT) of the vector of function
values (f(x0), f(x1), . . . , f(xN−1)),

ck =

N−1∑

n=0

f(xn)e−
2πi

N
kn k = 0, . . . ,N − 1. (26)

Likewise, the inverse discrete Fourier transform (IDFT) gives

f(xn) =
1

N

N−1∑

k=0

cke
2πi

N
kn n = 0, . . . ,N − 1. (27)

The DFT and its inverse ostensibly involve about O(N2) operations. The key to efficiency
of the pseudospectral method is that both can be computed more efficiently using the fast
Fourier transform (FFT), in O(N logN) operations.4 Optimized FFT routines, especially for
N that is a power of two or has only small prime factors, are widely available in scientific
software.

The possibility of using the standard forms (26) and (27) relies on a subtle wrap-around effect
of the DFT. Extended to arbitrary values of k, the sequence (f(xk)) is clearly periodic with
period N , i.e. f(xk+N) = f(xk), since f is assumed to extend periodically outside S. This
periodicity also holds for the ck coefficients, i.e. ck = ck+N and in particular c−N/2 = cN/2, as
can easily be verified algebraically from the DFT formulas. The impossibility of separating
out the higher frequency modes when using a finite number N of samples is a consequence
of the sampling theorem. Therefore, when performing computations, the Fourier coefficients
may be stored in an array with indices

3This follows from the Euler-Maclaurin summation formula.
4Strictly speaking, FFT denotes a family of related algorithms with O(N log N) complexity, rather than a

specific algorithm.
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[0, 1, . . . ,N − 1] or [1, 2, . . . ,N ]

while one must remember that the corresponding indices in (25) are

[
0, 1, . . . ,

N

2
− 1,

N

2
, −N

2
+ 1, . . . ,−2,−1

]
. (28)

The normalization convention for the DFT does not matter as long as the scaling is undone
consistently by the inverse DFT, since we will only perform linear operations on transformed
quantities.

The discussion of Fourier series on intervals is easily extended to three (or any finite number
of) dimensions. On a box

[
−L1

2
,
L1

2

]
×
[
−L2

2
,
L2

2

]
×
[
−L3

2
,
L3

2

]
,

we may use basis functions

φk1,k2,k3
(x1, x2, x3) = exp

(
2πi

(
k1x1

L1
+
k2x2

L2
+
k3x3

L3

))
(29)

and the corresponding multidimensional DFT

ck1,k2,k3
=

N1−1∑

n1=0

N2−1∑

n2=0

N3−1∑

n3=0

fn1,n2,n3
exp

(
−2πi

(
k1n1

N1
+
k2n2

N2
+
k3n3

N3

))
(30)

with inverse

fn1,n2,n3
=

1

N1N2N3

N1−1∑

k1=0

N2−1∑

k2=0

N3−1∑

k3=0

ck1,k2,k3
exp

(
2πi

(
n1k1

N1
+
n2k2

N2
+
n3k3

N3

))
. (31)

Both (30) and (31) can be evaluated by nested one-dimensional FFTs, although specialized
multidimensional FFT algorithms exist that take better advantage of the data order in mem-
ory. In Matlab, e.g., the fftn and ifftn functions may be used.

The DFT and IDFT are approximations of the continuous Fourier transform and its inverse.
This follows by the fact that the coefficients in the Fourier series of a periodic function
f essentially are the lattice point values of f̂ . Strictly speaking, the continuous Fourier
transform of a periodic function diverges, so this correspondence should be understood in a
limiting or distributional sense (f̂ is a sum of Dirac delta functions with the Fourier series
coefficients as multipliers).

In terms of the coefficient indices k, the discrete Fourier space coordinates are

ξk =
2πk

L

12



or in three dimensions,

ξk = ξk1,k2,k3
=

(
2πk1

L1
,
2πk2

L2
,
2πk3

L3

)
.

Since

φ′k(x) =
2πik

L
φk(x) = iξkφk

it is easy to see that the discrete Fourier transform allows us replace differential operators with
multiplication operators involving ξ, equivalent to those for the continuous Fourier transform
(see appendix A.1). From here on, we will freely use F(f) or f̂ to refer to either the exact
Fourier transform of a wavefunction or the numerical DFT approximation of its samples.

2.2 The pseudospectral method for Schrödinger-type equations

We now turn to the problem of solving the Schrödinger-type equation (10)

i~
∂

∂t
ψ(t) = Hψ(t),

that is, evaluating ψ(t) = e−iHt/~ψ0. Approximating the operator exponential explicitly by
means of the series (12) is impractical except for special H due to the fact that the higher
powers of operators are complicated. Accordingly, some simplification must be employed.

One approach is to truncate (12) after the n-th order term and take a succession of small
time steps. If the step length is τ , then the local error is of order O(τn+1). In particular,
n = 1 simply yields the forward (or explicit) Euler finite difference method in time for (10).

A second approach rests on the possibility of decomposing the Hamiltonian into H = T + V
where T is a differential operator (describing the kinetic energy of the system) and V is
a multiplication operator (describing the potential energy due to interaction with external
fields). Assuming that T can be diagonalized in Fourier space and V can be diagonalized in
ordinary space, their exponentials can be computed separately.

This suggests using

e−i(T+V )t/~ ≈ e−iT t/~e−iV t/~ (32)

which is approximate since eA+B = eAeB does not generally hold unless A and B commute.
However, if t is small enough this is a good approximation. The time discretization error
can be estimated using the Baker-Campbell-Hausdorff formula, and turns out to be of order
O(t2).

Choosing a small time step τ and applying this to (11) gives

ψ(t+ τ) = e−i(T+V )τ/~ψ0 ≈ F−1
(
e−iT τ/~F

(
e−iV τ/~ψ(t)

))
. (33)

13



Alternatively, a method with O(τ3) error is obtained by choosing the symmetric decomposi-
tion

ψ(t+ τ) ≈ e−iV τ/(2~)F−1
(
e−iT τ/~F

(
e−iV τ/(2~)ψ(t)

))
. (34)

This is also known as the Strang-splitting method. Combined with a way to compute the
Fourier transform, typically FFT, (33) or (34) defines a pseudospectral method for solving
(10).

In the ordinary Schrödinger equation for a scalar wavefunction, V and T are immediately
diagonal in the respective spaces. For the Dirac equation, we need to diagonalize 4×4 matrix
operators.

2.3 Example: the 1D Schrödinger equation

As an illustration, we state the pseudospectral method for the ordinary Schrödinger equation
with Hamiltonian

H = − ~2

2m

∂2

∂x2
+ V ≡ T + V

describing a particle with mass m in one dimension. We have

F [T ] =
~2|ξ|2
2m

.

Let the domain be [−L/2, L/2] with N sample points [x0, x1, . . . , xN−1], and let

ξ =
2π

L
[0, 1, . . . , N/2 − 1,N/2,−N/2 + 1, . . . ,−2, 1] .

Given the sampled wavefunction ψn = ψ(tn), we obtain ψn+1 = ψ(tn+1) where tn+1 = tn + τ
using the following sequence of operations:

1. Compute ψ̂n using FFT of ψn.

2. Compute the pointwise product φ̂ = e−iτ~ξ2/(2m)ψ̂n.

3. Compute φ using inverse FFT of φ̂.

4. Compute the pointwise product ψn+1 = e−iV τ/~φ.

The symmetric version is analogous, with one extra FFT and pointwise multiplication step.

14



2.4 Details for the Maxwell-Dirac system

We now state the time-splitting pseudospectral method introduced for the Maxwell-Dirac
system in [3]. The following derivation is slightly more detailed and corrects a few minor
typographical errors in the formulas of [3]. For reference, a related method with an alternative
approach to the integration of Maxwell’s equations is given in [1].

The algorithm for MD is similar to the previously-described method for the Schrödinger equa-
tion, with a two-step update of the wavefunction. The generated electromagnetic potential is
updated in an intermediate step. We decompose the Maxwell-Dirac Hamiltonian in (15) as
HT +HV where

HT = −
(
iǫ

δ

)
α · ∇ +

1

δ2
β (35)

and

HV = (V + Vex) − α · (A + Aex). (36)

Let tn be the starting time and let tn+1 = tn + τ . We suppose that ψn, Vn, V
′

n,An,A
′

n (where
primes denote time derivatives) are given for time tn and Vex, Aex for time tn+1. For clarity, let
Ψn = ψ(tn) denote the numerical approximation of the wavevector at time tn and let Φn+1

denote the intermediate result from the splitting of the Hamiltonian. Then the following
sequence of operations numerically solves the MD equations for time tn+1:

• Compute Ψ̂n = F [Ψn].

• (Step 1): Solve iǫψ′ = HTψ in Fourier space, i.e. compute Φ̂n+1 = exp(−iHT τ/ǫ)Ψ̂n.

• (Step 2): Solve Maxwell’s equations, i.e. compute Vn+1, V
′

n+1, An+1, A
′

n+1 using the
Crank-Nicolson time-stepping method in Fourier space.

• Compute Φn+1 = F−1[Φ̂n+1].

• (Step 3): Solve iǫψ′ = HV φ in real space, i.e. compute Ψn+1 = exp(−iHV τ/ǫ)Φn+1.

The details of steps 1, 2 and 3 are given in the following sections.

2.4.1 Computing the HT and HV exponentials

Defining M1 = −iHT τ/ǫ, our goal is to find an exact representation for the 4 × 4 matrix
exp(M1) by diagonalizing M1. Explicitly, moving to Fourier space where ∇ = iξ,

M1 =
τ

δ




−a 0 −iξ3 −iξ1 − ξ2
0 −a −iξ1 + ξ2 iξ3

−iξ3 −iξ1 − ξ2 a 0
−iξ1 + ξ2 iξ3 0 a




15



where a = i/(δǫ). By solving the characteristic equation |M1 − λI4|, we find that M1 has
four pure imaginary eigenvalues (λ, λ,−λ,−λ) where

λ =
iτ

ǫδ2

√
1 + ǫ2δ2|ξ|2

and therefore, letting c = cos(λ/i), s = sin(λ/i),

eD =




c+ is 0 0 0
0 c+ is 0 0
0 0 c− is 0
0 0 0 c− is


 .

It is now straightforward, if tedious work, to compute expressions for P and P−1 by solving
for each eigenvector, and then obtaining eM1 by multiplying out PeDP−1. Letting ω = ǫδξ
and t = s(1 + |ω|2)−1/2, the result is

eM1 =




c− it 0 −isω3 −s(ω2 + iω1)
0 c− it s(ω2 − iω1) isω3

−isω3 −s(ω2 + iω1) c+ it 0
s(ω2 − iω1) isω3 0 c+ it


 . (37)

To reliably arrive at this formula, a computer algebra system such as Mathematica (which
uses diagonalization internally to evaluate symbolic matrix exponentials) may be used. Math-
ematica performs the algebra without eliminating common subexpressions, so the resulting
formulas for the matrix entries are extremely long, but they can be obtained in a concise form
using the following code:

a1 = {{0,0,0,1}, {0,0,1,0}, {0,1,0,0}, {1,0,0,0}}

a2 = {{0,0,0,-I}, {0,0,I,0}, {0,-I,0,0}, {I,0,0,0}}

a3 = {{0,0,1,0}, {0,0,0,-1}, {1,0,0,0}, {0,-1,0,0}}

B = {{1,0,0,0}, {0,1,0,0}, {0,0,-1,0}, {0,0,0,-1}}

DT = (-I e/d)(a1 I xi1 + a2 I xi2 + a3 I xi3) + (1/d^2)B

M1 = -I DT t / e

assumptions = And[t>0, d>0, e>0, xi1^2>0, xi2^2>0, xi3^2>0]

FullSimplify[Refine[MatrixExp[M1][[j,k]], assumptions]]

Likewise, we compute the exponential of M2 = −iHV τ/ǫ. Temporarily writing V for V +Vex

and A for A+Aex,

M2 =
τ

ǫ




−iV 0 iA3 iA1 +A2

0 −iV iA1 −A2 −iA3

iA3 iA1 +A2 −iV 0
iA1 −A2 −iA3 0 −iV


 (38)

and the eigenvalues are (λ1, λ1, λ2, λ2) where
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λ1 =
iτ

ǫ
(−|A| − V )

λ2 =
iτ

ǫ
(|A| − V )

and |A| =
√
A2

1 +A2
2 +A2

3.

With Mathematica, the elements of exp(M2) can be obtained in reasonably simple form using

HV = V - (a1 A1 + a2 A2 + a3 A3)

M2 = -I HV t / e

assumptions = And[A1^2>0, A2^2>0, A3^2>0, e>0, t>0]

Simplify[ExpToTrig[

Expand[FullSimplify[

ComplexExpand[

Refine[Simplify[MatrixExp[M2]], assumptions][[j,k]]]]]]]

Let u = |A|τ/ǫ, v = τV/ǫ, and let su = sinu, cu = cos u, sv = sin v, cv = cos v. Further, let
Bk = Ak/|A| = Ak(A

2
1 + A2

2 + A2
3)

−1/2 with the understanding that Bk = 0 when |A| = 0.
Next, let a = cv − isv and b = icv + sv. Then,

eM2 =




cua 0 B3sub (iB1 +B2)sua
0 cua (B1 + iB2)sub −iB3sua

B3sub (iB1 +B2)sua cua 0
(B1 + iB2)sub iB3sua 0 cua


 . (39)

Note that formula for this matrix given in [3] (2.25-2.26) does not appear to be correct.

The code implementations of both eM1 and eM2 may be verified by comparing results for
randomly chosen inputs with the output of e.g. Matlab’s expm (which uses Padé approximants
to compute matrix exponentials). Although expm can also be used directly in the algorithm,
this is very slow compared to the use of exact formulas for large numbers of evaluation points.

2.4.2 Solving Maxwell’s equations

If we Fourier transform the potentials and current densities, the Maxwell equations in the MD
system simplify to a set of four simultaneous second-order ODEs in time (one ODE for each
f ∈ {V,A1, A2, A3}). Letting f̂ denote the Fourier transform of f , the transformed equations
read

(
δ2
∂2

∂t2
+ |ξ|2

)
V̂ = ǫ|̂ψ|2 (40)

(
δ2
∂2

∂t2
+ |ξ|2

)
Âk = ǫ ̂〈ψ,αkψ〉 k = 1, 2, 3 (41)
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Since they are second-order, the values of both f and f ′ = ∂tf must be given as initial data
at time tn. We now reduce (40)-(41) to first-order ODEs by expressing them in terms of the
vector variables g = (f̂ , f̂ ′). For each equation (40), (41) with respective right-hand side v̂,
the reduced system reads

Rg′ + Sg = v (42)

where

R =

(
1 0
0 δ2

)
S =

(
0 −1
0 |ξ|2

)
v =

(
0
v̂

)
. (43)

To solve an ODE in the standard form (42), a one-step finite difference method can be used.
Suppose we know g(tn) and wish to approximate g(tn+1). Letting τ = tn+1 − tn, gn = g(tn),
vn = v(tn), using the finite difference approximation

g′(t) ≈ gn+1 − gn

τ
t ∈ [tn, tn+1]

and elsewhere in (42) approximating (g(t),v(t)) on [tn, tn+1] as a weighted combination of
(gn,vn) and (gn+1,vn+1) gives the equation for the generalized midpoint method

R

(
gn+1 − gn

τ

)
+ S(θgn+1 + (1 − θ)gn) = θvn+1 + (1 − θ)vn (44)

where the weight θ ∈ [0, 1] may be chosen freely. Standard choices are θ = 0 (the explicit
or forward Euler method), θ = 1 (the implicit or backward Euler method) and θ = 1/2
(the midpoint or Crank-Nicolson method). The Crank-Nicolson method is suggested by [3]
due to its stability properties for wave equations and demonstrated accuracy in numerical
simulations of the similar Zakharov system.

Solving for gn+1 in (44) with θ = 1/2 gives

gn+1 =
(
R +

τ

2
S
)
−1 (τ

2
(vn + vn+1) +

(
R − τ

2
S
)
gn

)
(45)

which, evaluated explicitly for the MD system, becomes

(
V̂n+1

V̂ ′
n+1

)
= C

(
V̂n

V̂ ′
n

)
+ Dρ̂ (46)

(
(̂Ak)n+1(̂
A′

k

)
n+1

)
= C

(
(̂Ak)n(̂
A′

k

)
n

)
+ DĴk k = 1, 2, 3 (47)

with
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C =
1

r




1 − τ2|ξ|2
4δ2

τ

−τ |ξ|
2

δ2
1 − τ2|ξ|2

4δ2


 , D =

ǫτ

4rδ2

(
τ
2

)
(48)

where

r =

(
1 +

τ2|ξ|2
4δ2

)
(49)

and

ρ̂ = F
(
|Ψn|2 + |Φn+1|2

)
(50)

Ĵk = F (〈Ψn, αkΨn〉 + 〈Φn+1, αkΦn+1〉) k = 1, 2, 3. (51)

In summary, this step of the numerical algorithm consists of evaluating (50), (51), then (46)
and (47), and finally obtaining Vn+1, V

′

n+1, (Ak)n+1 and (A′

k)n+1 via inverse Fourier transform.
For a slight efficiency improvement, the matrices C and D may be precomputed if τ is fixed.
However, the eight total FFTs comprise the bulk of the work.

2.5 The Schrödinger-Poisson system

The Schrödinger-Poisson system can be solved using a pseudospectral method similar to
that for the Maxwell-Dirac system, with a decomposition of the Hamiltonian and update
of the potential V in an intermediate step. The main simplification is that, as with the
ordinary Schrödinger equation, all operations (particularly exponentials) are scalar since the
wavefunction components only interact via their influence on V . Since Poisson’s equation
does not involve any time derivatives, the step to update V also becomes simpler.

We solve the SP system for a time step τ by the following sequence of operations, given φe

and φp as initial data, and given the external potential Vex:

1. Update the wavefunction by the differential term of the Hamiltonian:

χe = F−1

[
exp

(
−1

2
i|ξ|2τ

)
F [φe(t)]

]
,

χp = F−1

[
exp

(
1

2
i|ξ|2τ

)
F [φp(t)]

]
.

2. Update the potential (solve Poisson’s equation):

V = F−1

[
1∗
|ξ|2F

[
|χe|2 + |χp|2

]]
.
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3. Update the wavefunction by the potential term of the Hamiltonian:

φe/p(t+ τ) = exp (−iτ (V + Vex))χe/p.

Above, ∗ signifies that an arbitrary value is chosen for zero mode |ξ|2 = 0, e.g. zero.

2.6 Analysis of the algorithms

Due to the general properties of the pseudospectral method, the algorithms we have given for
the Maxwell-Dirac and Schrödinger-Poisson systems can be expected to permit high-accuracy
simulations. For asymptotic studies of the MD system, the pseudospectral method has some
particularly useful features.

Firstly, since we solve the separate equations iǫψ′ = HTψ and iǫψ′ = HV ψ exactly, the
method exactly (up to floating-point roundoff) conserves the wavefunction norm. The same
is also true for the Schrödinger-Poisson system.

Secondly, the pseudospectral method remains stable in the asymptotic regime δ → 0, again
since we compute exp(−iHT τ/ǫ) exactly. According with the asymptotic analysis, the nonsin-
gular part of this matrix converges to the update matrix for the Schrödinger-Poisson system,
with error which can shown to be O(δ).

The pseudospectral method for the Schrödinger-Poisson system has the main advantage over
MD of being considerably simpler to implement, and it requires less computation per step
since there are fewer FFTs to perform. Both systems have the same O(N logN) complexity
per step, however.
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3 Simulation results

We now present some results of numerical simulations of the Maxwell-Dirac and Schrödinger-
Poisson equations. The simulations were performed using Matlab implementations of the
algorithms described in the previous section. Source code is given in appendix C.

In all the following simulations, the domain is the unit cube [−1
2 ,

1
2 ]3 for simplicity. We use

the same number N of grid points in each dimension, and denote the time step by τ . To
minimize aliasing effects, we only choose periodic smooth initial data and external fields.

As a first “sanity test”, the MD solver was tested on a specially chosen system with plane
wave initial data as given in [1] and [3]. By choosing time-dependent external potentials that
exactly cancel out the generated potentials, the wavefunction equation reduces to the free
Dirac equation with plane wave solution, for which the pseudospectral method gives exact
solution. Likewise, the Crank-Nicolson method gives exact solution for the Maxwell equations
when the particle density is constant. The code was tested to give the exact solution to within
floating-point roundoff error of about 10−13.

3.1 Interaction of components

As a first investigation of the Maxwell-Dirac system in the nonrelativistic limit, we look
at how the probability density moves between the upper (electronic) and lower (positronic)
parts of the wavefunction. We choose a smooth well-like potential Vex = 50 sin4(πx) sin4(πy),
Aex = 0, along with zero initial generated potentials

V = V ′ = A = A′ = 0

and a smooth initial wavefunction

ψ = (f, 0, 0, 0)T

where

f = cos2(π(x+ 0.1)) cos2(π(y + 0.1)).

Here the initial probability density is concentrated entirely in the upper part of the wave-
function. The result of simulations with some different values of δ is shown in figure 1,
demonstrating very clearly how the probability oscillates between the upper and lower parts.

With δ = 1, the distribution quite rapidly stabilizes around a probability of 1/2 for both
the upper and lower parts. As δ decreases, the particle becomes increasingly confined to the
upper subspace. The rate of the oscillation can also be seen to become more rapid and more
chaotic. Different patterns and stabilization values can be obtained by choosing different
initial data and potentials, but the general results are the same (c.f. figure 4 in [1]).

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t

||p
si

1|| 
+

 ||
ps

i 2||

 

 

δ = 1

δ = 1/2

δ = 1/4

δ = 1/8

Figure 1: Interaction of the upper and lower components of the Dirac wavefunction. The
graphs show the total probability for the upper part of the wavefunction, y = ‖ψ1‖ + ‖ψ2‖,
for different values of the nonrelativistic parameter δ ∼ c−1. The corresponding probability
for the lower part, not drawn, is the mirror quantity 1− y. Simulations were performed with
N = 24, τ = 1/64 and verified with N = 32, τ = 1/128.

3.2 Comparison of MD and SP

We compare the MD and SP systems for small δ, verifying both that the algorithm for MD
is accurate for extremely small parameter values and that the time evolution of MD is well
approximated by the time evolution of the SP system. We choose initial wavefunctions

ψ1 = φe = cos4(π(x+ 0.1)) cos4(π(y + 0.1))

ψ3 = φp = cos4(π(x− 0.1))4 cos4(π(y − 0.1))

ψ2 = ψ4 = 0

Setting two components for zero in MD us lets us work with scalar-valued φe and φp in SP.
We also choose zero initial potentials and set Vex = 100 sin4(πx) sin4(πy), Aex = 0.

Three snapshots at time t = 0.25, t = 0.75 and t = 1.0 with δ = 1/100 are shown in figures
4, 5, and 6 in appendix B. Visual inspection shows that the probability amplitudes for the
two systems distributed almost identically over the simulation timespan. Precise estimates of
the difference between the systems as a function of time are plotted in figures 2 and 3 with
δ = 1/100 and δ = 1/1000 respectively. Note the different scales on the y axis.
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Figure 2: Norm of the difference in probability amplitudes between MD (δ = 1/100) and SP
with. The y axis shows ‖|ψ1,2|2 − |φe|2‖ and ‖|ψ3,4|2 − |φp|2‖.
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Figure 3: Norm of the difference in probability amplitudes between MD (δ = 1/1000) and SP
with. The y axis shows ‖|ψ1,2|2 − |φe|2‖ and ‖|ψ3,4|2 − |φp|2‖.
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4 Discussion

We have seen that the Maxwell-Dirac equations, though a very hard system to study in full
generality, can be analyzed effectively in the nonrelativistic limit c→ ∞ (δ → 0). Our numer-
ical simulations confirm that the MD system with small values of δ is well-approximated by
the simpler Schrödinger-Poisson system. The results suggest that, at least in some applica-
tions of the Dirac equation, it may be possible to work with the more well-behaved SP system
instead of the MD system. Our simulations also confirm that the algorithm introduced by
Huang et al. performs very well, at least for simple test problems, and likely also can be
adapted to solve other, similar, singular asymptotic problems.

Much further work is possible. The numerical MD system has enormously many degrees
of freedom: choice of initial data, choice of potentials, the semiclassical and nonrelativistic
parameters, number of space dimensions, and space/time resolution. Much further work can
be done studying variations in any of these. Many properties of the solution, such as the
fine structure of the magnetic field, would also be interesting to study in more detail. It may
also be interesting to compare the pseudospectral method with other algorithms, for instance
finite difference and finite element methods.
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A Mathematical tools

A.1 The Fourier transform

One of the most important tools in the mathematics of quantum mechanics, and not least
in the study of the Dirac equation, is the Fourier transform. We let F(f) or f̂ denote the
Fourier transform of f , and let F−1(f̂) denote the inverse transform, viz.

f̂(ξ) = (F)(ξ) =

∫
∞

−∞

f(x)e−2πixξdx

f(x) = (F−1f̂)(x) =

∫
∞

−∞

f̂(ξ)e2πixξdξ

and analogously in three dimensions. In this text, the symbol ξ is used exclusively to denote
an argument of a Fourier transformed function, i.e. a Fourier space coordinate.

The utility of the Fourier transform when analyzing differential equations is that differential
operators in ordinary space turn into multiplication operators in Fourier space. This reduces
partial differential equations (PDEs) in space and time to ordinary differential equations
(ODEs) in time for which straightforward numerical methods often can be used. With slight
abuse of notation,

F
[
∂

∂x

]
= iξ

F
[
∂2

∂x2

]
= −|ξ|2

and in n dimensions, the gradient and Laplace operators become

F [∇] = iξ = i(ξ1, . . . , ξn)

F [∆] = −|ξ|2 = −
(
|ξ1|2 + . . .+ |ξn|2

)
.

From the physical point of view, the Fourier transform translates from ordinary space, de-
scribed by the coordinates x = (x, y, z), to momentum space or Fourier space. In the latter
space, the momentum operator p = −i~∇ reduces to multiplication by the momentum coor-
dinate vector p = ξ = ~(ξ1, ξ2, ξ3), and in particular, p = ξ if we choose ~ = 1. In analogous
fashion, the Fourier transform with respect to time translates between time and energy.
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A.2 Diagonalization

Matrix operators, such as the Dirac operator, are often most effectively analyzed via diago-
nalization. Differential matrix operators, such as the free Dirac operator, can be diagonalized
in similar to fashion to ordinary matrices by transforming them to Fourier space.

A square matrix A is diagonalizable if there exists a matrix P and diagonal matrix D such
that A = PDP−1. Diagonalizing A amounts to finding a basis of eigenvectors of A: more
precisely, P is the concatenation of the eigenvectors of A, and the diagonal of D contains
the corresponding eigenvalues. Since (aP )−1 = a−1P , the matrices P and P−1 can both be
chosen so as to be unitary, which is sometimes convenient.

Diagonalization is useful for computation of matrix or operator exponentials, and often gives
more information than direct application of the exponential power series. It is easy to show
that Ak = PDkP−1, and therefore

eA =

∞∑

k=0

Ak

k!
=

∞∑

k=0

1

k!
PDkP−1 = P

(
∞∑

k=0

1

k!
Dk

)
P−1 = PeDP−1.

The exponential of a diagonal matrix is the elementwise exponential, and therefore also eA

can be computed. Likewise, qualitative information about eA is obtained from the eigenval-
ues. Diagonalization works for other analytic functions of matrices besides the exponential
function.
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B Wavefunction snapshots
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Figure 4: Snapshot of time evolution of the Maxwell-Dirac and Schrödinger-Poisson systems,
with nonrelativistic parameter δ = 1/100 for MD. The left hand side shows ‖ψ1‖2+‖ψ2‖2 and
‖ψ3‖2+‖ψ4‖2 with the probability amplitude in the z-direction integrated onto the x, y-plane.
The right hand side shows ‖φe‖2 and ‖φp‖2.
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Figure 5: Snapshot of MD and SP, time t = 0.75. See caption of figure 4 for additional
information.
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Figure 6: Snapshot of MD and SP, time t = 1.0. See caption of figure 4 for additional
information.
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C Source code

C.1 Example usage

% demo.m

epsilon = 1.0;

delta = 0.01;

dt = 1./128;

N = 32;

[space , fspace] = md_domain([ -0.5 ,0.5] ,[ -0.5 ,0.5] ,[-0.5,0.5] ,N);

x = space {1};

y = space {2};

z = space {3};

zero = x.*0;

xyz2 = x.^2 + y.^2 + z.^2;

volume = 1;

% Initial wavefunction

wv_e = cos(pi*(x+0.1)).^4 .* cos(pi*(y+0.1)) .^ 4;

wv_p = cos(pi*(x -0.1)).^4 .* cos(pi*(y -0.1)) .^ 4;

psi{1} = wv_e;

psi{2} = zero;

psi{3} = wv_p;

psi{4} = zero;

phi_e = wv_e;

phi_p = wv_p;

% Initial potentials

V = zero;

dV = zero;

for i=1:3

A{i} = zero;

dA{i} = zero;

end

TMAX = 1;

clear M;

n = 0;

t = 0.0;

t_hist = [];

e_err_hist = [];

p_err_hist = [];

mde_hist = {};

mdp_hist = {};

spe_hist = {};

spp_hist = {};

while t < TMAX
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n = n + 1;

t = t + dt;

Vex = 5 * sin(pi*x).^4 .* sin(pi*y).^4;

Aex = {0, 0, 0};

[psi , V, dV , A, dA] = md_step(psi , V, dV , A, dA , ...

space , fspace , dt , epsilon , delta , Vex , Aex);

[phi_e , phi_p] = sp_step(phi_e , phi_p , Vex , dt , ...

space , fspace );

abspsi = md_abs2(psi);

psinorm = sum(abspsi (:)) * volume / N^3;

clf;

hold on;

wvplot(x, y, N, {psi{1},psi{2}}, psinorm , 2, 2, 1, ...

’MD , electronic (psi_{1 ,2})’);

wvplot(x, y, N, {psi{3},psi{4}}, psinorm , 2, 2, 3, ...

’MD , positronic (psi_{3 ,4})’);

wvplot(x, y, N, {phi_e}, psinorm , 2, 2, 2, ...

’SP , electronic (phi_e)’);

wvplot(x, y, N, {phi_p}, psinorm , 2, 2, 4, ...

’SP , positronic (phi_p)’);

drawnow;

end

C.2 MD and SP solvers

% md_step.m

% Given solution of MD system at time t,

% compute solution at time t + dt.

% Vex and Aex are given external potentials at time t + dt.

%

% V and dV are single arrays

% A and dA are 3-item cell arrays for A1 , A2 , A3

% psi is a 4-item cell array for psi1 , psi2 , psi3 , psi4

%

% space and fspace are coordinates , as computed by md_domain

% epsilon and delta are scale parameters for asymptotic solution

function [psi_new , V_new , dV_new , A_new , dA_new] = ...

md_step(psi_n , V_n , dV_n , A_n , dA_n , ...

space , fspace , dt , epsilon , delta , Vex , Aex)

% Fourier transform of psi

for i=1:4

psihat_n{i} = fftn(psi_n{i});

end

% Forward exponential matrix

M = md_expmatrix1(epsilon , delta , fspace , dt);

for i=1:4

phihat_new{i} = M{i,1}.* psihat_n{1} + M{i ,2}.* psihat_n{2} + ...

M{i,3}.* psihat_n{3} + M{i ,4}.* psihat_n{4};

end
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% Inverse Fourier transform of phi_{n+1}

for i=1:4

phi_new{i} = ifftn(phihat_new{i});

end

% Compute current and particle densities

% 2.21

% rho_n = |psi_n|^2

% rho_{n+1} = |phi_{n+1}|^2

rho_n = md_abs2(psi_n);

rho_new = md_abs2(phi_new);

J_n = md_diracprod(delta , psi_n);

J_new = md_diracprod(delta , phi_new);

% FFT

Vhat_n = fftn(V_n);

dVhat_n = fftn(dV_n);

rhohat_n = fftn(rho_n);

rhohat_new = fftn(rho_new);

for i=1:3

Ahat_n{i} = fftn(A_n{i});

dAhat_n{i} = fftn(dA_n{i});

%Jhat_n{i} = fftn(J_n{i});

%Jhat_new{i} = fftn(J_new{i});

Jhat_sum{i} = fftn(J_n{i} + J_new{i});

end

% Update A and V with the Crank -Nicolson method

% 2.19 -2.21

% Crank -Nicolson update matrix, (2.19)

% This could be precomputed for fixed dt , but it ’s a small

% part of the total computation time anyway.

% |xi|^2

absxi2 = md_abs2(fspace );

CN_factor = 1 ./ (1 + (dt^2 * absxi2 / (4*delta ^2)));

CN_M11 = 1 - (dt^2 * absxi2 / (4*delta ^2));

CN_M12 = dt;

CN_M21 = -dt*absxi2/delta ^2;

CN_M22 = 1 - (dt^2 * absxi2 / (4*delta ^2));

CN_B1 = epsilon * dt^2 / (4*delta ^2);

CN_B2 = epsilon * dt / (2*delta ^2);

% End CN update matrix

BV = rhohat_n + rhohat_new;

Vhat_new = (CN_M11 .*Vhat_n+CN_M12 .* dVhat_n+CN_B1.*BV).*CN_factor;

dVhat_new = (CN_M21 .*Vhat_n+CN_M22 .* dVhat_n+CN_B2.*BV).*CN_factor;

for i=1:3

%BA = delta * (Jhat_n{i} + Jhat_new{i});

BA = delta * Jhat_sum{i};

Ahat_new{i} = (CN_M11 .*Ahat_n{i} + CN_M12 .*dAhat_n{i} + ...

CN_B1.*BA) .* CN_factor;
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dAhat_new{i} = (CN_M21 .*Ahat_n{i} + CN_M22 .*dAhat_n{i} + ...

CN_B2.*BA) .* CN_factor;

end

% Updated V and A and their derivatives

V_new = ifftn(Vhat_new);

dV_new = ifftn(dVhat_new);

for i=1:3

A_new{i} = ifftn(Ahat_new{i});

dA_new{i} = ifftn(dAhat_new{i});

end

M = md_expmatrix2(epsilon , delta , V_new , Vex , A_new , Aex , dt);

for i=1:4

psi_new{i} = M{i,1}.* phi_new{1} + M{i ,2}.* phi_new{2} + ...

M{i,3}.* phi_new{3} + M{i ,4}.* phi_new{4};

end

% Possibly remove imaginary noise

V_new = real(V_n);

dV_new = real(dV_n);

for i=1:3

A_new{i} = real(A_new{i});

dA_new{i} = real(dA_new{i});

end

% sp_step.m

function [phi_e ,phi_p] = sp_step(phi_e , phi_p , Vex , ...

dt, space , fspace)

x=space {1};

y=space {2};

z=space {3};

px=fspace {1};

py=fspace {2};

pz=fspace {3};

xi2 = px.^2 + py.^2 + pz.^2;

% Solve i * (d/dt) phi_{e/p} = (-/+ Delta /2) phi_{e/p}

phi_e = ifftn( exp(-0.5i*xi2*dt) .* fftn(phi_e) );

phi_p = ifftn( exp(0.5i*xi2*dt) .* fftn(phi_p) );

% Poisson ’s equation

% -Delta V = |phi_p|^2 + |phi_e |^2

Vhat = fftn( abs(phi_e ).^2 + abs(phi_p ).^2 ) ./ xi2;

Vhat(1,1,1) = 0;

V = ifftn(Vhat);

% Solve i * (d/dt) phi_{e/p} = (V + Vex) phi_{e/p}

phi_e = exp(-1i*dt*(V+Vex)) .* phi_e;

phi_p = exp(-1i*dt*(V+Vex)) .* phi_p;
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% md_expmatrix1.m

% Note: formulas refer to the paper by Huang et al.

function M = md_expmatrix1(epsilon , delta , xi , dt)

xi1 = xi{1};

xi2 = xi{2};

xi3 = xi{3};

% |xi|^2

absxi2 = xi1.*xi1 + xi2.*xi2 + xi3.*xi3;

% |epsilon * delta * xi|^2

absepsdeltaxi2 = absxi2 * epsilon^2 * delta ^2;

% 2.16

lambda = 1i/( epsilon*delta ^2)*sqrt(1+epsilon^2*delta^2*absxi2 );

% 2.18

cl = cos(-1i*lambda*dt);

sl = sin(-1i*lambda*dt) .* ((1+ absepsdeltaxi2) .^ ( -0.5));

M = cell(4 ,4);

% 2.17

M{1,1} = cl - 1i.*sl;

M{1,2} = 0;

M{1,3} = -1i .* epsilon .* delta .* sl .* xi3;

M{1,4} = -epsilon .* delta .* sl .* (xi2+1i.*xi1);

M{2,1} = 0;

M{2,2} = cl - 1i*sl;

M{2,3} = epsilon .* delta .* sl .* (xi2 -1i.*xi1);

M{2,4} = 1i .* epsilon .* delta .* sl .* xi3;

M{3,1} = -1i .* epsilon .* delta .* sl .* xi3;

% note: typo in paper

M{3,2} = -epsilon .* delta .* sl .* (xi2+1i.*xi1);

M{3,3} = cl + 1i.*sl;

M{3,4} = 0;

M{4,1} = epsilon .* delta .* sl .* (xi2 -1i.*xi1);

M{4,2} = 1i .* epsilon .* delta .* sl .* xi3;

M{4,3} = 0;

M{4,4} = cl + 1i.*sl;

% md_expmatrix2.m

% Compute the second exponential matrix

function M = md_expmatrix2(epsilon , delta , V, Vex , A, Aex , dt)

V = V + Vex;

A1 = A{1} + Aex{1};

A2 = A{2} + Aex{2};

A3 = A{3} + Aex{3};

M = cell(4 ,4);

Aabs = sqrt(abs(A1).^2 + abs(A2).^2 + abs(A3).^2);

%RA = 1 ./ Aabs;

RA = A1 * 0;

% Note: this is a normalization constant. Where 1/|A| is undefined ,

% the corresponding component in the matrix will be zero.

for k=1:numel(Aabs)

if Aabs(k) == 0

RA(k) = 0;
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else

RA(k) = 1./Aabs(k);

end

end

B1 = A1 .* RA;

B2 = A2 .* RA;

B3 = A3 .* RA;

u = Aabs .* dt ./ epsilon;

v = dt .* V ./ epsilon;

su = sin(u);

cu = cos(u);

sv = sin(v);

cv = cos(v);

a = cv -1i.*sv;

b = 1i.*cv + sv;

M{1 ,1}=cu.*a; M{1 ,2}=0;

M{1 ,3}=B3.*su.*b; M{1 ,4}=(1i.*B1+B2).*su.*a;

M{2 ,1}=0; M{2 ,2}=M{1 ,1};

M{2 ,3}=(B1+1i.*B2).*su.*b; M{2 ,4}= -1i.*B3.*su.*a;

M{3 ,1}=M{1 ,3}; M{3 ,2}=M{1 ,4}; M{3 ,3}=M{1 ,1}; M{3 ,4}=0;

M{4 ,1}=M{2 ,3}; M{4 ,2}=M{2 ,4}; M{4 ,3}=0; M{4 ,4}=M{1 ,1};

% md_domain.m

% space --3-item cell array of space cooordinates [x,y,z]

% fspace --3-item cell array of Fourier coordinates [xi1 ,xi2 ,xi3]

% each coordinate array is N x N x N

function [space , fspace] = md_domain(xd, yd, zd , N)

pos_x1 = xd(1); pos_x2 = xd(2);

pos_y1 = yd(1); pos_y2 = yd(2);

pos_z1 = zd(1); pos_z2 = zd(2);

xwidth = pos_x2 - pos_x1;

ywidth = pos_y2 - pos_y1;

zwidth = pos_z2 - pos_z1;

%volume = xwidth * ywidth * zwidth;

xs = linspace(pos_x1, pos_x2 , N+1); xs = xs(1:N);

ys = linspace(pos_y1, pos_y2 , N+1); ys = ys(1:N);

zs = linspace(pos_z1, pos_z2 , N+1); zs = zs(1:N);

[xx, yy, zz] = ndgrid(xs , ys , zs);

% Coordinates xi in Fourier (momentum) space

% Note that the Fourier modes range from -N/2+1 to N/2, but

% the FFT indexing starts at 0, so there is wraparound.

pv = [];

for p=0:N-1

if p < floor(N/2)

pv(p+1) = p;

else

pv(p+1) = p - N;

end

end
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[xi1 ,xi2 ,xi3] = ndgrid (2*pi*pv/xwidth ,2*pi*pv/ywidth ,...

2*pi*pv/zwidth );

space = cell(3 ,1);

fspace = cell(3 ,1);

space {1} = xx;

space {2} = yy;

space {3} = zz;

fspace {1} = xi1;

fspace {2} = xi2;

fspace {3} = xi3;

C.3 Helper files

% md_abs2.m

function y = md_abs2(x)

y = 0;

for i=1:length(x)

y = y + abs(x{i}).^2;

end

end

% md_diracprod.m

% Computes {Y_1 , Y_2 , Y_3} where Y_k = <X, alpha^k X> / c

% where <x,y> is the C^4 inner product with x conjugated

% alpha^k is a Dirac matrix

function Y = md_diracprod(c, X)

Y = cell(3 ,1);

A1 = conj(X{1});

A2 = conj(X{2});

A3 = conj(X{3});

A4 = conj(X{4});

Y{1} = A1.*X{4} + A2.*X{3} + A3.*X{2} + A4.*X{1};

Y{2} = i*(A2.*X{3} + A4.*X{1} - A1.*X{4} - A3.*X{2});

Y{3} = A1.*X{3} + A3.*X{1} - A2.*X{4} - A4.*X{2};

Y{1} = Y{1} / c;

Y{2} = Y{2} / c;

Y{3} = Y{3} / c;

end

% flatten2.m

function y = flatten2(f, N)

abspsi = md_abs2(f);

y = abspsi (: ,: ,1);

for i=2:N

y = y + abspsi (:,:,i);
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end

y = y / N;

% wvplot.m

function data = wvplot(x, y, N, f, fnorm , srows , scols , sn , msg)

subplot(srows ,scols ,sn);

Z = flatten2(f, N) ./ fnorm;

surf(x(:,:,N/2), y(:,:,N/2), Z);

zlim([0 ,4]);

view( -20 ,30);

pbaspect([1 1 1]);

title(msg);

data = Z;
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