
FLINT: Fast Library for Number Theory

Fredrik Johansson

Global Virtual Sage Days 112.358
June 2022

1 / 20



Topics

• About FLINT and related projects (Antic, Arb, Calcium)

• Development status: present, future

• Interfacing with FLINT

2 / 20



What is FLINT? (https://flintlib.org/)

sage: R.<x> = ZZ["x"]

sage: f = (x + 1)^10000

sage: %timeit f * f

523 ms ± 1.85 ms per loop (...)

sage: len(str(f * f))

87035463

3 / 20

https://flintlib.org/


FLINT programming

#include "flint/fmpz_poly.h"

int main()

{

fmpz_poly_t f, g;

fmpz_poly_init(f);

fmpz_poly_init(g);

fmpz_poly_set_coeff_si(f, 0, 1); // f = 1

fmpz_poly_set_coeff_si(f, 1, 1); // f = 1 + x

fmpz_poly_pow(f, f, 10000); // f = f ^ 10000

fmpz_poly_mul(g, f, f); // g = f * f

fmpz_poly_clear(f);

fmpz_poly_clear(g);

}
4 / 20



FLINT feature highlights

• Base rings: Z, Q, Z/nZ, Fq, Qp

• Matrices (dense)

• Polynomials (dense univariate, sparse multivariate)

• Integer factorization, primality proving (best-of-breed
algorithms including quadratic sieve, ECM and APRCL)

• Number-theoretic functions

• Many matrix operations: LU, FFLU, HNF, SNF, LLL, . . .

• Special polynomial and power series functions

• Polynomial GCD and factorization (univariate and
multivariate), multivariate ideal reduction

• Many fast multiplication algorithms (+ reduction of various
operations to multiplication)

5 / 20



FLINT design philosophy

• Written in plain C

• Extensively tested

• Extensively documented

• Same public/private API

• Developer friendly

• Builds on top of GMP and MPFR

• Optimized for large operands (asymptotically fast algorithms)

• Optimized for small operands

• Multithreaded

• Verbose, fully-featured (currently 600,000 lines of code . . . )

6 / 20



FLINT and GMP

Why our own integer and rational types (fmpz, fmpq)?

• An fmpz is only one word: values up to ±(262 − 1) stored
inline, otherwise becomes pointer to a GMP mpz. This is
significantly faster for typical workloads.

• GMP still provides most of the low-level multi-word integer
arithmetic.

• We provide far more functions on top of basic arithmetic, well
beyond the scope of GMP.

• FLINT’s Schönhage-Strassen FFT: slightly faster than GMP
on one core, and multithreaded (≈ 5x speedup on 8 cores)

7 / 20



FFT timings (courtesy of Daniel Schultz)

(Thanks to Daniel Schultz for the plot)

8 / 20



Antic, Arb and Calcium

Antic - https://github.com/wbhart/antic/

• Algebraic number fields

• Binary quadratic forms

Arb - https://arblib.org/

• Real and complex ball arithmetic

• Special functions, numerical analysis tools (integration, etc.)

• Additional number theory functionality (e.g. Dirichlet
characters)

Calcium - https://fredrikj.net/calcium/

• Exact algebraic and transcendental numbers

• Extra FLINT utilities (symbolic expressions, multivariate
rational functions, (slow) Gröbner bases)

9 / 20

https://github.com/wbhart/antic/
https://arblib.org/
https://fredrikj.net/calcium/


What’s new in FLINT 2.9 (upcoming)

Partial list:

• Optimized some fmpz functions for small inputs

• Speedups to nmod arithmetic

• Improvements to fq_default (use nmod where optimal)

• n-th derivative for Z[x ], Q[x ]

• Eulerian polynomials; speedups for Stirling and Bell numbers

• Square root functions for various rings

• Solving for non-square/singular matrices over Q
• Support “multivariate” polynomials with zero variables

• FFT matrix multiplication

• Parallel programming helpers

10 / 20



Currently active FLINT developers

Bill Hart
(maintainer, 2007-2022) Me (2010-)

Daniel Schultz
(2017-2022)

Albin Ahlbäck (2021-)

11 / 20



Past authors

• David Harvey (polynomial multiplication)

• Andy Novocin (LLL and polynomial factorization)

• Sebastian Pancratz (polynomials, p-adics, matrices)

• Mike Hansen, Andres Goens (finite fields)

• Abhinav Baid, Curtis Bright (LLL)

• Alex Best (HNF, SNF, linear algebra improvements)

• Martin Lee, Lina Kulakova (polynomial factorization)

• Tom Bachmann (C++ interface)

• Luca De Feo, Edouard Rousseau (finite field embeddings)

• Kushagra Singh (ECM), Vladimir Glazachev (APRCL)

Plus dozens of other contributors listed on
http://flintlib.org/authors.html

12 / 20

http://flintlib.org/authors.html


Future FLINT development and funding?

• With Bill and Dan stepping down this year, I will take over
maintenance and direction of FLINT.

• Near term: no direct backing by a major grant like
OpenDreamKit, OSCAR. I have tried to apply for small grants
to help develop Arb & Calcium without success.

• We’ve had 7-8 very good GSoC students (2012-2015).
None continued working on FLINT after the project.
Crucial to have good mentors.

• Inria can potentially allocate “research engineers” for targeted
short-term projects. I’m not sure how useful this is.

• Future of MPFR is also uncertain. MPFR has two active
developers: Paul Zimmermann and Vincent Lefèvre, and Paul
is retiring in a few years. GMP has three active developers.

13 / 20



Development plans

• Performance optimization

Better algorithms and implementations
Multithreading, improvements for modern hardware

• More math functions

• Code cleanup

• Possible merger of FLINT/Antic/Arb/Calcium?

• Generics

• Interfaces (including Sage/Python)

14 / 20



More multithreading

FLINT has been threadsafe since 2009, extensively multithreaded
(polynomial multiplication, integer factorization, etc.) since 2020.

flint_set_num_threads(N) makes FLINT up to N times faster

Note: it looks like Sage does not yet wrap this function

New parallel programming helpers:

• flint parallel do

• flint parallel binary_splitting

15 / 20



Upcoming parallelization in Arb

Timing examples (on my 8-core laptop, Zen3):

• Integration of
∫ 8
0 sin(x + ex)dx to 1000 digits: 2.4 s → 0.4 s

• 106-th Bernoulli number: 20.5 s → 4.8 s

• exp(x) with 10 million digits: 20 s → 4.5 s

16 / 20



Vectorization, “extended-precision” arithmetic

• Arbitrary-precision types are not suited for vector processing
(SIMD, GPU)

• Convert to vector-friendly representations

Already done in FLINT e.g. for BLAS matrix multiplication

NTL uses vectorized modular arithmetic (AVX2) and beats
FLINT in some ranges: see Victor Shoup’s comparison
https://libntl.org/benchmarks.pdf

• Idea for Arb: double and double-double ball arithmetic

17 / 20

https://libntl.org/benchmarks.pdf


Generic rings in C (experimental)

https://github.com/fredrik-johansson/generic-rings

Parent (context object) + element (void pointer) model

gr_ctx_t ZZ, ZZx;

gr_ptr f;

int status;

gr_ctx_init_fmpz(ZZ);

gr_ctx_init_polynomial(ZZx, ZZ);

GR_TMP_INIT(f, ZZx);

status = gr_set_si(f, 3, ZZx);

status |= gr_pow_ui(f, f, 10, ZZx);

gr_print(f, ZZx);

18 / 20

https://github.com/fredrik-johansson/generic-rings


Goals and benefits

• Wrap existing FLINT/Antic/Arb/Calcium types

• Complement existing specialized types with generic recursively
constructed matrices, polynomials, multivariate polynomials,
fraction fields, power series...

• Support all unusual cases in FLINT/Antic/Arb/Calcium (error
handling, inexact rings, noncomputable rings, context objects)
mathematically correctly and with a uniform interface

• Plain C, similar programming model to existing FLINT code.
Small code size, fast compilation. Allows streamlining FLINT?

• Possible to pack data efficiently (down to 1 byte / element)

19 / 20



Interfacing with FLINT/Antic/Arb/Calcium

• FLINT wrappers in Sage (Cython)

Highly incomplete

• Python-FLINT (Cython)

Also incomplete, in need of basic maintenance

• Nemo + AbstractAlgebra (Julia)

Most complete and most efficient wrapper
Status of Python-Julia interoperability?

• Other wrappers

• C generics (interface to FLINT in FLINT) potentially helpful?

20 / 20


