mag.h – fixed-precision unsigned floating-point numbers for bounds

The mag_t type is an unsigned floating-point type with a fixed-precision mantissa (30 bits) and an arbitrary-precision exponent (represented as an fmpz_t), suited for representing and rigorously manipulating magnitude bounds efficiently. Operations always produce a strict upper or lower bound, but for performance reasons, no attempt is made to compute the best possible bound (in general, a result may a few ulps larger/smaller than the optimal value). The special values zero and positive infinity are supported (but not NaN). Applications requiring more flexibility (such as correct rounding, or higher precision) should use the arf_t type instead.

Types, macros and constants

mag_struct

A mag_struct holds a mantissa and an exponent. Special values are encoded by the mantissa being set to zero.

mag_t

A mag_t is defined as an array of length one of type mag_struct, permitting a mag_t to be passed by reference.

Memory management

void mag_init(mag_t x)

Initializes the variable x for use. Its value is set to zero.

void mag_clear(mag_t x)

Clears the variable x, freeing or recycling its allocated memory.

void mag_init_set(mag_t x, const mag_t y)

Initializes x and sets it to the value of y.

void mag_swap(mag_t x, mag_t y)

Swaps x and y efficiently.

void mag_set(mag_t x, const mag_t y)

Sets x to the value of y.

mag_ptr _mag_vec_init(slong n)

Allocates a vector of length n. All entries are set to zero.

void _mag_vec_clear(mag_ptr v, slong n)

Clears a vector of length n.

Special values

void mag_zero(mag_t x)

Sets x to zero.

void mag_one(mag_t x)

Sets x to one.

void mag_inf(mag_t x)

Sets x to positive infinity.

int mag_is_special(const mag_t x)

Returns nonzero iff x is zero or positive infinity.

int mag_is_zero(const mag_t x)

Returns nonzero iff x is zero.

int mag_is_inf(const mag_t x)

Returns nonzero iff x is positive infinity.

int mag_is_finite(const mag_t x)

Returns nonzero iff x is not positive infinity (since there is no NaN value, this function is exactly the negation of mag_is_inf()).

Comparisons

int mag_equal(const mag_t x, const mag_t y)

Returns nonzero iff x and y have the same value.

int mag_cmp(const mag_t x, const mag_t y)

Returns negative, zero, or positive, depending on whether x is smaller, equal, or larger than y.

int mag_cmp_2exp_si(const mag_t x, slong y)

Returns negative, zero, or positive, depending on whether x is smaller, equal, or larger than \(2^y\).

void mag_min(mag_t z, const mag_t x, const mag_t y)
void mag_max(mag_t z, const mag_t x, const mag_t y)

Sets z respectively to the smaller or the larger of x and y.

Input and output

void mag_print(const mag_t x)

Prints x to standard output.

void mag_fprint(FILE * file, const mag_t x)

Prints x to the stream file.

Random generation

void mag_randtest(mag_t x, flint_rand_t state, slong expbits)

Sets x to a random finite value, with an exponent up to expbits bits large.

void mag_randtest_special(mag_t x, flint_rand_t state, slong expbits)

Like mag_randtest(), but also sometimes sets x to infinity.

Conversions

void mag_set_d(mag_t y, double x)
void mag_set_fmpr(mag_t y, const fmpr_t x)
void mag_set_ui(mag_t y, ulong x)
void mag_set_fmpz(mag_t y, const fmpz_t x)

Sets y to an upper bound for \(|x|\).

void mag_set_d_2exp_fmpz(mag_t z, double x, const fmpz_t y)
void mag_set_fmpz_2exp_fmpz(mag_t z, const fmpz_t x, const fmpz_t y)
void mag_set_ui_2exp_si(mag_t z, ulong x, slong y)

Sets z to an upper bound for \(|x| \times 2^y\).

void mag_get_fmpr(fmpr_t y, const mag_t x)

Sets y exactly to x.

void mag_get_fmpq(fmpq_t y, const mag_t x)

Sets y exactly to x. Assumes that no overflow occurs.

double mag_get_d(const mag_t x)

Returns a double giving an upper bound for x.

void mag_set_ui_lower(mag_t z, ulong x)
void mag_set_fmpz_lower(mag_t z, const fmpz_t x)

Sets y to a lower bound for \(|x|\).

void mag_set_fmpz_2exp_fmpz_lower(mag_t z, const fmpz_t x, const fmpz_t y)

Sets z to a lower bound for \(|x| \times 2^y\).

Arithmetic

void mag_mul_2exp_si(mag_t z, const mag_t x, slong y)
void mag_mul_2exp_fmpz(mag_t z, const mag_t x, const fmpz_t y)

Sets z to \(x \times 2^y\). This operation is exact.

void mag_mul(mag_t z, const mag_t x, const mag_t y)
void mag_mul_ui(mag_t z, const mag_t x, ulong y)
void mag_mul_fmpz(mag_t z, const mag_t x, const fmpz_t y)

Sets z to an upper bound for \(xy\).

void mag_add(mag_t z, const mag_t x, const mag_t y)
void mag_add_ui(mag_t z, const mag_t x, ulong y)

Sets z to an upper bound for \(x + y\).

void mag_addmul(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(z + xy\).

void mag_add_2exp_fmpz(mag_t z, const mag_t x, const fmpz_t e)

Sets z to an upper bound for \(x + 2^e\).

void mag_add_ui_2exp_si(mag_t z, const mag_t x, ulong y, slong e)

Sets z to an upper bound for \(x + y 2^e\).

void mag_div(mag_t z, const mag_t x, const mag_t y)
void mag_div_ui(mag_t z, const mag_t x, ulong y)
void mag_div_fmpz(mag_t z, const mag_t x, const fmpz_t y)

Sets z to an upper bound for \(x / y\).

void mag_mul_lower(mag_t z, const mag_t x, const mag_t y)
void mag_mul_ui_lower(mag_t z, const mag_t x, ulong y)
void mag_mul_fmpz_lower(mag_t z, const mag_t x, const fmpz_t y)

Sets z to a lower bound for \(xy\).

void mag_add_lower(mag_t z, const mag_t x, const mag_t y)

Sets z to a lower bound for \(x + y\).

void mag_sub(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(\max(x-y, 0)\).

void mag_sub_lower(mag_t z, const mag_t x, const mag_t y)

Sets z to a lower bound for \(\max(x-y, 0)\).

Fast, unsafe arithmetic

The following methods assume that all inputs are finite and that all exponents (in all inputs as well as the final result) fit as fmpz inline values. They also assume that the output variables do not have promoted exponents, as they will be overwritten directly (thus leaking memory).

void mag_fast_init_set(mag_t x, const mag_t y)

Initialises x and sets it to the value of y.

void mag_fast_zero(mag_t x)

Sets x to zero.

int mag_fast_is_zero(const mag_t x)

Returns nonzero iff x to zero.

void mag_fast_mul(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(xy\).

void mag_fast_addmul(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(z + xy\).

void mag_fast_add_2exp_si(mag_t z, const mag_t x, slong e)

Sets z to an upper bound for \(x + 2^e\).

void mag_fast_mul_2exp_si(mag_t z, const mag_t x, slong e)

Sets z to an upper bound for \(x 2^e\).

Powers and logarithms

void mag_pow_ui(mag_t z, const mag_t x, ulong e)
void mag_pow_fmpz(mag_t z, const mag_t x, const fmpz_t e)

Sets z to an upper bound for \(x^e\). Requires \(e \ge 0\).

void mag_pow_ui_lower(mag_t z, const mag_t x, ulong e)

Sets z to a lower bound for \(x^e\).

void mag_sqrt(mag_t z, const mag_t x)

Sets z to an upper bound for \(\sqrt{x}\).

void mag_rsqrt(mag_t z, const mag_t x)

Sets z to an upper bound for \(1/\sqrt{x}\).

void mag_hypot(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(\sqrt{x^2 + y^2}\).

void mag_root(mag_t z, const mag_t x, ulong n)

Sets z to an upper bound for \(x^{1/n}\). We evaluate \(\exp(\log(1+2^{kn}x)/n) 2^{-k}\), where k is chosen so that \(2^{kn}x \approx 2^{30}\).

void mag_log1p(mag_t z, const mag_t x)

Sets z to an upper bound for \(\log(1+x)\). The bound is computed accurately for small x.

void mag_log_ui(mag_t z, ulong n)

Sets z to an upper bound for \(\log(n)\).

void mag_exp(mag_t z, const mag_t x)

Sets z to an upper bound for \(\exp(x)\).

void mag_expinv(mag_t z, const mag_t x)

Sets z to an upper bound for \(\exp(-x)\). As currently implemented, the bound is computed crudely by rounding x down to an integer before approximating the exponential.

void mag_expm1(mag_t z, const mag_t x)

Sets z to an upper bound for \(\exp(x) - 1\). The bound is computed accurately for small x.

void mag_exp_tail(mag_t z, const mag_t x, ulong N)

Sets z to an upper bound for \(\sum_{k=N}^{\infty} x^k / k!\).

void mag_binpow_uiui(mag_t z, ulong m, ulong n)

Sets z to an upper bound for \((1 + 1/m)^n\).

void mag_geom_series(mag_t res, const mag_t x, ulong N)

Sets res to an upper bound for \(\sum_{k=N}^{\infty} x^k\).

Special functions

void mag_const_pi(mag_t z)

Sets z to an upper bound for \(\pi\).

void mag_fac_ui(mag_t z, ulong n)

Sets z to an upper bound for \(n!\).

void mag_rfac_ui(mag_t z, ulong n)

Sets z to an upper bound for \(1/n!\).

void mag_bernoulli_div_fac_ui(mag_t z, ulong n)

Sets z to an upper bound for \(|B_n| / n!\) where \(B_n\) denotes a Bernoulli number.

void mag_polylog_tail(mag_t u, const mag_t z, slong s, ulong d, ulong N)

Sets u to an upper bound for

\[\sum_{k=N}^{\infty} \frac{z^k \log^d(k)}{k^s}.\]

Note: in applications where \(s\) in this formula may be real or complex, the user can simply substitute any convenient integer \(s'\) such that \(s' \le \operatorname{Re}(s)\).

Denote the terms by \(T(k)\). We pick a nonincreasing function \(U(k)\) such that

\[\frac{T(k+1)}{T(k)} = z \left(\frac{k}{k+1}\right)^s \left( \frac{\log(k+1)}{\log(k)} \right)^d \le U(k).\]

Then, as soon as \(U(N) < 1\),

\[\sum_{k=N}^{\infty} T(k) \le T(N) \sum_{k=0}^{\infty} U(N)^k = \frac{T(N)}{1 - U(N)}.\]

In particular, we take

\[U(k) = z \; B(k, \max(0, -s)) \; B(k \log(k), d)\]

where \(B(m,n) = (1 + 1/m)^n\). This follows from the bounds

\[\begin{split}\left(\frac{k}{k+1}\right)^{s} \le \begin{cases} 1 & \text{if } s \ge 0 \\ (1 + 1/k)^{-s} & \text{if } s < 0. \end{cases}\end{split}\]

and

\[\left( \frac{\log(k+1)}{\log(k)} \right)^d \le \left(1 + \frac{1}{k \log(k)}\right)^d.\]
void mag_hurwitz_zeta_uiui(mag_t res, ulong s, ulong a)

Sets res to an upper bound for \(\zeta(s,a) = \sum_{k=0}^{\infty} (k+a)^{-s}\). We use the formula

\[\zeta(s,a) \le \frac{1}{a^s} + \frac{1}{(s-1) a^{s-1}}\]

which is obtained by estimating the sum by an integral. If \(s \le 1\) or \(a = 0\), the bound is infinite.