.. _fexpr: **fexpr.h** -- flat-packed symbolic expressions =============================================================================== This module supports working with symbolic expressions. Introduction ----------------------------------------------------------------------- Formally, a symbolic expression is either: * An atom, being one of the following: * An integer, for example 0 or -34. * A symbol, for example ``x``, ``Mul``, ``SomeUserNamedSymbol``. Symbols should be valid C identifiers (containing only the characters ``A-Z``, ``a-z``, ``0-9``, ``_``, and not starting with a digit). * A string, for example ``"Hello, world!"``. For the moment, we only consider ASCII strings, but there is no obstacle in principle to supporting UTF-8. * A non-atomic expression, representing a function call `e_0(e_1, \ldots, e_n)` where `e_0, \ldots, e_n` are symbolic expressions. The meaning of an expression depends on the interpretation of symbols in a given context. For example, with a standard intepretation (used within Calcium) of the symbols ``Mul``, ``Add`` and ``Neg``, the expression ``Mul(3, Add(Neg(x), y))`` encodes the formula `3 \cdot ((-x)+y)` where ``x`` and ``y`` are symbolic variables. See :ref:`fexpr-builtin` for documentation of builtin symbols. Computing and embedding data ....................................................................... Symbolic expressions are usually not the best data structure to use directly for heavy-duty computations. Functions acting on symbolic expressions will typically convert to a dedicated data structure (e.g. polynomials) internally and (optionally) convert the final result back to a symbolic expression. Symbolic expressions do not allow embedding arbitrary binary objects such as Flint/Arb/Antic/Calcium types as atoms. This is done on purpose to make symbolic expressions easy to use as a data exchange format. To embed an object in an expression, one has the following options: * Represent the object structurally using atoms supported natively by symbolic expressions (for example, an integer polynomial can be represented as a list of coefficients or as an arithmetic expression tree). * Introduce a dummy symbol to represent the object, maintaining an external translation table mapping this symbol to the intended value. * Encode the object using a string or symbol name. This is generally not recommended, as it requires parsing; properly used, symbolic expressions have the benefit of being able to represent the parsed structure. Flat-packed representation ....................................................................... Symbolic expressions are often implemented using trees of pointers (often together with hash tables for uniqueness), requiring some form of memory management. The :type:`fexpr_t` type, by contrast, stores a symbolic expression using a "flat-packed" representation without internal pointers. The expression data is just an array of words (``ulong``). The first word is a header encoding type information (whether the expression is a function call or an atom, and the type of the atom) and the total number of words in the expression. For atoms, the data is stored either in the header word itself (small integers and short symbols/strings) or in the following words. For function calls, the header is followed by the expressions `e_0`, ..., `e_n` packed contiguously in memory. Pros: * Memory management is trivial. * Copying an expression is just copying an array of words. * Comparing expressions for equality is just comparing arrays of words. * Merging expressions is basically just concatenating arrays of words. * Expression data can be shared freely in binary form between threads and even between machines (as long as all machines have the same word size and endianness). Cons: * Repeated instances of the same subexpression cannot share memory (a workaround is to introduce local dummy symbols for repeated subexpressions). * Extracting a subexpression for modification generally requires making a complete copy of that subxepression (however, for read-only access to subexpressions, one can use "view" expressions which have zero overhead). * Manipulating a part of an expression generally requires rebuilding the whole expression. * Building an expression incrementally is typically `O(n^2)`. As a workaround, it is a good idea to work with balanced (low-depth) expressions and try to construct an expression in one go (for example, to create a sum, create a single ``Add`` expression with many arguments instead of chaining binary ``Add`` operations). Types and macros ------------------------------------------------------------------------------- .. type:: fexpr_struct .. type:: fexpr_t An *fexpr_struct* consists of a pointer to an array of words along with a record of the number of allocated words. An *fexpr_t* is defined as an array of length one of type *fexpr_struct*, permitting an *fexpr_t* to be passed by reference. .. type:: fexpr_ptr Alias for ``fexpr_struct *``, used for arrays of expressions. .. type:: fexpr_srcptr Alias for ``const fexpr_struct *``, used for arrays of expressions when passed as constant input to functions. .. type:: fexpr_vec_struct .. type:: fexpr_vec_t A type representing a vector of expressions with managed length. The structure contains an :type:`fexpr_ptr` *entries* for the entries, an integer *length* (the size of the vector), and an integer *alloc* (the number of allocated entries). .. macro:: fexpr_vec_entry(vec, i) Returns a pointer to entry *i* in the vector *vec*. Memory management ------------------------------------------------------------------------------- .. function:: void fexpr_init(fexpr_t expr) Initializes *expr* for use. Its value is set to the atomic integer 0. .. function:: void fexpr_clear(fexpr_t expr) Clears *expr*, freeing its allocated memory. .. function:: fexpr_ptr _fexpr_vec_init(slong len) Returns a heap-allocated vector of *len* initialized expressions. .. function:: void _fexpr_vec_clear(fexpr_ptr vec, slong len) Clears the *len* expressions in *vec* and frees *vec* itself. .. function:: void fexpr_fit_size(fexpr_t expr, slong size) Ensures that *expr* has room for *size* words. .. function:: void fexpr_set(fexpr_t res, const fexpr_t expr) Sets *res* to the a copy of *expr*. .. function:: void fexpr_swap(fexpr_t a, fexpr_t b) Swaps *a* and *b* efficiently. Size information ------------------------------------------------------------------------------- .. function:: slong fexpr_depth(const fexpr_t expr) Returns the depth of *expr* as a symbolic expression tree. .. function:: slong fexpr_num_leaves(const fexpr_t expr) Returns the number of leaves (atoms, counted with repetition) in the expression *expr*. .. function:: slong fexpr_size(const fexpr_t expr) Returns the number of words in the internal representation of *expr*. .. function:: slong fexpr_size_bytes(const fexpr_t expr) Returns the number of bytes in the internal representation of *expr*. The count excludes the size of the structure itself. Add ``sizeof(fexpr_struct)`` to get the size of the object as a whole. .. function:: slong fexpr_allocated_bytes(const fexpr_t expr) Returns the number of allocated bytes in the internal representation of *expr*. The count excludes the size of the structure itself. Add ``sizeof(fexpr_struct)`` to get the size of the object as a whole. Comparisons ------------------------------------------------------------------------------- .. function:: int fexpr_equal(const fexpr_t a, const fexpr_t b) Checks if *a* and *b* are exactly equal as expressions. .. function:: int fexpr_equal_si(const fexpr_t expr, slong c) .. function:: int fexpr_equal_ui(const fexpr_t expr, ulong c) Checks if *expr* is an atomic integer exactly equal to *c*. .. function:: ulong fexpr_hash(const fexpr_t expr) Returns a hash of the expression *expr*. .. function:: int fexpr_cmp_fast(const fexpr_t a, const fexpr_t b) Compares *a* and *b* using an ordering based on the internal representation, returning -1, 0 or 1. This can be used, for instance, to maintain sorted arrays of expressions for binary search; the sort order has no mathematical significance. Atoms ------------------------------------------------------------------------------- .. function:: int fexpr_is_integer(const fexpr_t expr) Returns whether *expr* is an atomic integer .. function:: int fexpr_is_symbol(const fexpr_t expr) Returns whether *expr* is an atomic symbol. .. function:: int fexpr_is_string(const fexpr_t expr) Returns whether *expr* is an atomic string. .. function:: int fexpr_is_atom(const fexpr_t expr) Returns whether *expr* is any atom. .. function:: void fexpr_zero(fexpr_t res) Sets *res* to the atomic integer 0. .. function:: int fexpr_is_zero(const fexpr_t expr) Returns whether *expr* is the atomic integer 0. .. function:: int fexpr_is_neg_integer(const fexpr_t expr) Returns whether *expr* is any negative atomic integer. .. function:: void fexpr_set_si(fexpr_t res, slong c) void fexpr_set_ui(fexpr_t res, ulong c) void fexpr_set_fmpz(fexpr_t res, const fmpz_t c) Sets *res* to the atomic integer *c*. .. function:: void fexpr_get_fmpz(fmpz_t res, const fexpr_t expr) Sets *res* to the atomic integer in *expr*. This aborts if *expr* is not an atomic integer. .. function:: void fexpr_set_symbol_builtin(fexpr_t res, slong id) Sets *res* to the builtin symbol with internal index *id* (see :ref:`fexpr-builtin`). .. function:: int fexpr_is_builtin_symbol(const fexpr_t expr, slong id) Returns whether *expr* is the builtin symbol with index *id* (see :ref:`fexpr-builtin`). .. function:: int fexpr_is_any_builtin_symbol(const fexpr_t expr) Returns whether *expr* is any builtin symbol (see :ref:`fexpr-builtin`). .. function:: void fexpr_set_symbol_str(fexpr_t res, const char * s) Sets *res* to the symbol given by *s*. .. function:: char * fexpr_get_symbol_str(const fexpr_t expr) Returns the symbol in *expr* as a string. The string must be freed with :func:`flint_free`. This aborts if *expr* is not an atomic symbol. .. function:: void fexpr_set_string(fexpr_t res, const char * s) Sets *res* to the atomic string *s*. .. function:: char * fexpr_get_string(const fexpr_t expr) Assuming that *expr* is an atomic string, returns a copy of this string. The string must be freed with :func:`flint_free`. Input and output ------------------------------------------------------------------------ .. function:: void fexpr_write(calcium_stream_t stream, const fexpr_t expr) Writes *expr* to *stream*. .. function:: void fexpr_print(const fexpr_t expr) Prints *expr* to standard output. .. function:: char * fexpr_get_str(const fexpr_t expr) Returns a string representation of *expr*. The string must be freed with :func:`flint_free`. Warning: string literals appearing in expressions are currently not escaped. LaTeX output ------------------------------------------------------------------------ .. function:: void fexpr_write_latex(calcium_stream_t stream, const fexpr_t expr, ulong flags) Writes the LaTeX representation of *expr* to *stream*. .. function:: void fexpr_print_latex(const fexpr_t expr, ulong flags) Prints the LaTeX representation of *expr* to standard output. .. function:: char * fexpr_get_str_latex(const fexpr_t expr, ulong flags) Returns a string of the LaTeX representation of *expr*. The string must be freed with :func:`flint_free`. Warning: string literals appearing in expressions are currently not escaped. The *flags* parameter allows specifying options for LaTeX output. The following flags are supported: .. macro:: FEXPR_LATEX_SMALL Generate more compact formulas, most importantly by printing fractions inline as `p/q` instead of as `\displaystyle{\frac{p}{q}}`. This flag is automatically activated within subscripts and superscripts and in certain other parts of formulas. .. macro:: FEXPR_LATEX_LOGIC Use symbols for logical operators such as Not, And, Or, which by default are rendered as words for legibility. Function call structure ------------------------------------------------------------------------ .. function:: slong fexpr_nargs(const fexpr_t expr) Returns the number of arguments *n* in the function call `f(e_1,\ldots,e_n)` represented by *expr*. If *expr* is an atom, returns -1. .. function:: void fexpr_func(fexpr_t res, const fexpr_t expr) Assuming that *expr* represents a function call `f(e_1,\ldots,e_n)`, sets *res* to the function expression *f*. .. function:: void fexpr_view_func(fexpr_t view, const fexpr_t expr) As :func:`fexpr_func`, but sets *view* to a shallow view instead of copying the expression. The variable *view* must not be initialized before use or cleared after use, and *expr* must not be modified or cleared as long as *view* is in use. .. function:: void fexpr_arg(fexpr_t res, const fexpr_t expr, slong i) Assuming that *expr* represents a function call `f(e_1,\ldots,e_n)`, sets *res* to the argument `e_{i+1}`. Note that indexing starts from 0. The index must be in bounds, with `0 \le i < n`. .. function:: void fexpr_view_arg(fexpr_t view, const fexpr_t expr, slong i) As :func:`fexpr_arg`, but sets *view* to a shallow view instead of copying the expression. The variable *view* must not be initialized before use or cleared after use, and *expr* must not be modified or cleared as long as *view* is in use. .. function:: void fexpr_view_next(fexpr_t view) Assuming that *view* is a shallow view of a function argument `e_i` in a function call `f(e_1,\ldots,e_n)`, sets *view* to a view of the next argument `e_{i+1}`. This function can be called when *view* refers to the last argument `e_n`, provided that *view* is not used afterwards. This function can also be called when *view* refers to the function *f*, in which case it will make *view* point to `e_1`. .. function:: int fexpr_is_builtin_call(const fexpr_t expr, slong id) Returns whether *expr* has the form `f(\ldots)` where *f* is a builtin function defined by *id* (see :ref:`fexpr-builtin`). .. function:: int fexpr_is_any_builtin_call(const fexpr_t expr) Returns whether *expr* has the form `f(\ldots)` where *f* is any builtin function (see :ref:`fexpr-builtin`). Composition ------------------------------------------------------------------------ .. function:: void fexpr_call0(fexpr_t res, const fexpr_t f) void fexpr_call1(fexpr_t res, const fexpr_t f, const fexpr_t x1) void fexpr_call2(fexpr_t res, const fexpr_t f, const fexpr_t x1, const fexpr_t x2) void fexpr_call3(fexpr_t res, const fexpr_t f, const fexpr_t x1, const fexpr_t x2, const fexpr_t x3) void fexpr_call4(fexpr_t res, const fexpr_t f, const fexpr_t x1, const fexpr_t x2, const fexpr_t x3, const fexpr_t x4) void fexpr_call_vec(fexpr_t res, const fexpr_t f, fexpr_srcptr args, slong len) Creates the function call `f(x_1,\ldots,x_n)`. The *vec* version takes the arguments as an array *args* and *n* is given by *len*. Warning: aliasing between inputs and outputs is not implemented. .. function:: void fexpr_call_builtin1(fexpr_t res, slong f, const fexpr_t x1) void fexpr_call_builtin2(fexpr_t res, slong f, const fexpr_t x1, const fexpr_t x2) Creates the function call `f(x_1,\ldots,x_n)`, where *f* defines a builtin symbol. Subexpressions and replacement ------------------------------------------------------------------------ .. function:: int fexpr_contains(const fexpr_t expr, const fexpr_t x) Returns whether *expr* contains the expression *x* as a subexpression (this includes the case where *expr* and *x* are equal). .. function:: int fexpr_replace(fexpr_t res, const fexpr_t expr, const fexpr_t x, const fexpr_t y) Sets *res* to the expression *expr* with all occurrences of the subexpression *x* replaced by the expression *y*. Returns a boolean value indicating whether any replacements have been performed. Aliasing is allowed between *res* and *expr* but not between *res* and *x* or *y*. .. function:: int fexpr_replace2(fexpr_t res, const fexpr_t expr, const fexpr_t x1, const fexpr_t y1, const fexpr_t x2, const fexpr_t y2) Like :func:`fexpr_replace`, but simultaneously replaces *x1* by *y1* and *x2* by *y2*. .. function:: int fexpr_replace_vec(fexpr_t res, const fexpr_t expr, const fexpr_vec_t xs, const fexpr_vec_t ys) Sets *res* to the expression *expr* with all occurrences of the subexpressions given by entries in *xs* replaced by the corresponding expressions in *ys*. It is required that *xs* and *ys* have the same length. Returns a boolean value indicating whether any replacements have been performed. Aliasing is allowed between *res* and *expr* but not between *res* and the entries of *xs* or *ys*. Arithmetic expressions ------------------------------------------------------------------------ .. function:: void fexpr_set_fmpq(fexpr_t res, const fmpq_t x) Sets *res* to the rational number *x*. This creates an atomic integer if the denominator of *x* is one, and otherwise creates a division expression. .. function:: void fexpr_set_arf(fexpr_t res, const arf_t x) void fexpr_set_d(fexpr_t res, double x) Sets *res* to an expression for the value of the floating-point number *x*. NaN is represented as ``Undefined``. For a regular value, this creates an atomic integer or a rational fraction if the exponent is small, and otherwise creates an expression of the form ``Mul(m, Pow(2, e))``. .. function:: void fexpr_set_re_im_d(fexpr_t res, double x, double y) Sets *res* to an expression for the complex number with real part *x* and imaginary part *y*. .. function:: void fexpr_neg(fexpr_t res, const fexpr_t a) void fexpr_add(fexpr_t res, const fexpr_t a, const fexpr_t b) void fexpr_sub(fexpr_t res, const fexpr_t a, const fexpr_t b) void fexpr_mul(fexpr_t res, const fexpr_t a, const fexpr_t b) void fexpr_div(fexpr_t res, const fexpr_t a, const fexpr_t b) void fexpr_pow(fexpr_t res, const fexpr_t a, const fexpr_t b) Constructs an arithmetic expression with given arguments. No simplifications whatsoever are performed. .. function:: int fexpr_is_arithmetic_operation(const fexpr_t expr) Returns whether *expr* is of the form `f(e_1,\ldots,e_n)` where *f* is one of the arithmetic operators ``Pos``, ``Neg``, ``Add``, ``Sub``, ``Mul``, ``Div``. .. function:: void fexpr_arithmetic_nodes(fexpr_vec_t nodes, const fexpr_t expr) Sets *nodes* to a vector of subexpressions of *expr* such that *expr* is an arithmetic expression with *nodes* as leaves. More precisely, *expr* will be constructed out of nested application the arithmetic operators ``Pos``, ``Neg``, ``Add``, ``Sub``, ``Mul``, ``Div`` with integers and expressions in *nodes* as leaves. Powers ``Pow`` with an atomic integer exponent are also allowed. The nodes are output without repetition but are not automatically sorted in a canonical order. .. function:: int fexpr_get_fmpz_mpoly_q(fmpz_mpoly_q_t res, const fexpr_t expr, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx) Sets *res* to the expression *expr* as a formal rational function of the subexpressions in *vars*. The vector *vars* must have the same length as the number of variables specified in *ctx*. To build *vars* automatically for a given expression, :func:`fexpr_arithmetic_nodes` may be used. Returns 1 on success and 0 on failure. Failure can occur for the following reasons: * A subexpression is encountered that cannot be interpreted as an arithmetic operation and does not appear (exactly) in *vars*. * Overflow (too many terms or too large exponent). * Division by zero (a zero denominator is encountered). It is important to note that this function views *expr* as a formal rational function with *vars* as formal indeterminates. It does thus not check for algebraic relations between *vars* and can implicitly divide by zero if *vars* are not algebraically independent. .. function:: void fexpr_set_fmpz_mpoly(fexpr_t res, const fmpz_mpoly_t poly, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx) void fexpr_set_fmpz_mpoly_q(fexpr_t res, const fmpz_mpoly_q_t frac, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx) Sets *res* to an expression for the multivariate polynomial *poly* (or rational function *frac*), using the expressions in *vars* as the variables. The length of *vars* must agree with the number of variables in *ctx*. If *NULL* is passed for *vars*, a default choice of symbols is used. .. function:: int fexpr_expanded_normal_form(fexpr_t res, const fexpr_t expr, ulong flags) Sets *res* to *expr* converted to expanded normal form viewed as a formal rational function with its non-arithmetic subexpressions as terminal nodes. This function first computes nodes with :func:`fexpr_arithmetic_nodes`, sorts the nodes, evaluates to a rational function with :func:`fexpr_get_fmpz_mpoly_q`, and then converts back to an expression with :func:`fexpr_set_fmpz_mpoly_q`. Optional *flags* are reserved for future use. Vectors ------------------------------------------------------------------------ .. function:: void fexpr_vec_init(fexpr_vec_t vec, slong len) Initializes *vec* to a vector of length *len*. All entries are set to the atomic integer 0. .. function:: void fexpr_vec_clear(fexpr_vec_t vec) Clears the vector *vec*. .. function:: void fexpr_vec_print(const fexpr_vec_t vec) Prints *vec* to standard output. .. function:: void fexpr_vec_swap(fexpr_vec_t x, fexpr_vec_t y) Swaps *x* and *y* efficiently. .. function:: void fexpr_vec_fit_length(fexpr_vec_t vec, slong len) Ensures that *vec* has space for *len* entries. .. function:: void fexpr_vec_set(fexpr_vec_t dest, const fexpr_vec_t src) Sets *dest* to a copy of *src*. .. function:: void fexpr_vec_append(fexpr_vec_t vec, const fexpr_t expr) Appends *expr* to the end of the vector *vec*. .. function:: slong fexpr_vec_insert_unique(fexpr_vec_t vec, const fexpr_t expr) Inserts *expr* without duplication into vec, returning its position. If this expression already exists, *vec* is unchanged. If this expression does not exist in *vec*, it is appended. .. function:: void fexpr_vec_set_length(fexpr_vec_t vec, slong len) Sets the length of *vec* to *len*, truncating or zero-extending as needed. .. function:: void _fexpr_vec_sort_fast(fexpr_ptr vec, slong len) Sorts the *len* entries in *vec* using the comparison function :func:`fexpr_cmp_fast`. .. raw:: latex \newpage