News about FLINT

Fredrik Johansson

2024-06-17
MPFR/MPC/MPFI/ARB Developers Meeting
Bordeaux

FLINT 2020 - present

- Bill Hart and Daniel Schultz leaving (2022)
- Albin Ahlbäck joining (2021)
- Big 3.0 release (2023)
- Merged Arb, Calcium, Antic
- Generic rings
- Small-prime FFT
- SIMD, assembly and multithreading optimizations
- Build and test system overhaul
- Interfaces (e.g. Python-flint)
- Many new functions and improvements

Workshops

Kaiserslautern (October 2023), Bordeaux (March 2024)

Integer multiplication: FLINT vs GMP

flint_mpn_mul_n vs mpn_mul_n

Generics in FLINT 3: motivation

Original FLINT philosophy: one ring \leftrightarrow one C type

- fmpq- \mathbb{Q}
- arb- \mathbb{R}
- arb_poly $-\mathbb{R}[x]$

Drawbacks:

- 100 types $\times 100$ methods ≈ 10000 methods
- Hard to optimize versatile types (e.g. arb) for every use case

With generics, we can have:

- Generic polynomials, matrices, power series, etc. that work with any coefficient type
- Unified interface to all FLINT types and methods
- More specialized, efficient base types

Implementing rings

A ring R is defined by a context object ctx which contains:

- sizeof(element)
- Elements will be packed contiguously in vectors
- Parameters and settings specific to a ring
- A method table
- Memory management: init, clear, swap, ...
- Assignment: zero, one, set, set_si, set_other, ...
- Arithmetic: neg, add, sub, mul, div, ...
- Predicates: is_zero, equal, ...
- I/O: write, set_str, randomization: randtest
- Ring predicates: is_field, is_commutative_ring, ...
- Optional overloads for speed: vec_add, mat_mul, poly_mul, ...

Correctness \& error handling

Methods perform error handling uniformly, returning flags:

- DOMAIN (e.g. divide by zero)
- UNABLE (e.g. overflow, not implemented, undecidable)

Predicates return TRUE, FALSE or UNKNOWN.

Rings have enclosure semantics for inexact elements. For example, we distinguish between two kinds of power series:
$-2-3 x+O\left(x^{3}\right)$ is an enclosure in $R[[x]]$

- $2-3 x\left(\bmod x^{3}\right)$ is an exact element in $R[[x]] /\left\langle x^{3}\right\rangle$

Example

Two implementations of real numbers:

```
>>> from flint_ctypes import *
```

>>> RR_ca("(1 + 1/3)^(1/2)")
$1.15470\{(2 * a) / 3$ where $a=1.73205[a \wedge 2-3=0]\}$
>>> $\operatorname{RR}\left("(1+1 / 3)^{\wedge}(1 / 2) "\right)$
[1.154700538379251 +/- 6.94e-16]

Floating-point approximations, with the same interface:

```
>>> RF("(1 + 1/3)^(1/2)")
1.154700538379251
```

```
>>> A = Mat(R)([[R.cos(1), R.sin(1)], [R.\operatorname{sin}(-1), R.\operatorname{cos(1)]])}
>>> A
[[[0.540302305868140 +/- 4.59e-16], [0.841470984807897 +/- 6.08e-16]],
[[-0.841470984807897 +/- 6.08e-16], [0.540302305868140 +/- 4.59e-16]]]
>>> A.det()
[1.00000000000000 +/- 5.90e-16]
>>> A.det() == R("0.999")
False
>>> A.det() == 1
Traceback (most recent call last):
flint_ctypes.Undecidable: unable to decide x == y for
    x = [1.00000000000000 +/- 5.90e-16], y = 1 over
    Real numbers (arb, prec = 53)
```

```
>>> R = RR_ca
>>> A = Mat(R)([[R.cos(1), R.sin(1)], [R.\operatorname{sin}(-1), R.cos(1)]])
>>> A
[[0.540302 - 0e-24*I {(a^2+1)/(2*a) where
    a = 0.540302 + 0.841471*I [Exp(1.00000*I {b})], ...
>>> A.det()
1
>>> A.det() == 1
True
>>> R = RF
>>> A = Mat(R)([[R.cos(1), R.\operatorname{sin}(1)], [R\cdot\operatorname{sin}(-1), R.\operatorname{cos(1)]])}
>>> A
[[0.5403023058681398, 0.8414709848078965],
[-0.8414709848078965, 0.5403023058681398]]
>>> A.det()
1.0000000000000000
```

The Arb-based implementation of \mathbb{R} does not contain the element ∞ but admits the enclosure $(-\infty,+\infty)$.

```
>>> 1 / RR(0)
FlintDomainError: x / y is not an element of
    {Real numbers (arb, prec = 53)} for {x = 1}, {y = 0}
>>> 1 / RR("0 +/- 0.001")
FlintUnableError: failed to compute x / y in
    {Real numbers (arb, prec = 53)} for {x = 1}, {y = [+/- 1.01e-3]}
```

>>> RR("+/- 1e100").exp()
[+/- inf]

Specializations: few-word arithmetic

mpn_mod: $\mathbb{Z} / m \mathbb{Z}$ for n-limb moduli m

The modulus m is a parameter of the ring. Elements are represented by n contiguous limbs a_{0}, \ldots, a_{n-1}.

No pointers or memory allocation overhead; elements can be allocated on the stack, copied, and placed contiguously in vectors

Specialization: $\mathbb{Z} / m \mathbb{Z}$ for n-limb moduli m

Speedup for polynomial GCD

Specialization: $\mathbb{Z} / m \mathbb{Z}$ for n-limb moduli m

Speedup solving $A x=b$

Few-word floating-point numbers

nfloat: floating-point number with n-limb precision

- nfloat64
- nfloat128
- nfloat192
- nfloat1024
- ...

A vector of L elements a, b, \ldots is simply a vector of $(n+2) L$ limbs:

$$
\left\{a_{\exp }, a_{\mathrm{sgn}}, a_{0}, \ldots, a_{n-1}, b_{\exp }, b_{\mathrm{sgn}}, b_{0}, \ldots, b_{n-1}, \ldots\right\}
$$

Don't bother with correct rounding: 2 ulps error is fine.

Example

Time in seconds to solve a random 100×100 linear system $A x=b$.

prec	mpf	mpfr	arf	nfloat	dd/qd
64	0.015	0.013	0.00356	0.00221	-
128	0.0154	0.0183	0.00425	0.00253	0.00193
192	0.0163	0.0225	0.00921	0.0036	-
256	0.0177	0.0243	0.0101	0.00435	0.0223
512	0.0255	0.0311	0.0163	0.00943	-
1024	0.0551	0.0546	0.044	0.00278	-
2048	0.15	0.115	0.0961	0.082	-

Example

Time to isolate all the complex roots of $f \in \mathbb{Z}[x]$:

Polynomial	Degree	FLINT 3.1	FLINT 3.2-dev	Speedup
$x^{50}+(100 x+1)^{5}$	50	0.278 s	0.102 s	$2.73 x$
$W_{100}(x)$	100	1.30 s	0.52 s	2.50 x
$T_{300}(x)$	150	3.75 s	1.44 s	2.60 x
$\sum_{i=0}^{256} x^{i} / i!$	256	8.397 s	2.845 s	2.95 x
$\Phi_{777}(x)$	432	28.0 s	0.65 s	43.1 x
$B_{640}(x)$	640	114.1 s	20.2 s	5.65 x
$\sum_{i=0}^{1000}(i+1) x^{i}$	1000	4134 s	4.31 s	959 x

To do

- Similar optimizations for ball arithmetic
- Classical interval arithmetic
- Faster elementary functions (see paper with Joris van der Hoeven)
- Generic code for transcendental functions with guaranteed accuracy for any floating-point output format (partially implemented)
- Machine precision arithmetic

