Efficient implementation of the
Hardy-Ramanujan-Rademacher formula

or: Partitions in the quintillions

Fredrik Johansson

RISC-Linz

July 10, 2013

2013 SIAM Annual Meeting
San Diego, CA

Supported by Austrian Science Fund (FWF) grant Y464-N18

/ 32

The partition function

p(n) counts the number of ways n can be written as the sum of positive
integers without regard to order.

Example: p(4) =5 since

W=0B+1)=02+2)=Q2+1+1)=(1+1+1+1)

(p(n)>2 =1,1,2,3,5,7,11,15,22,30,42. ..

Growth of p(n)

(10) = 42
(100) = 190569292
p(1000) = 24061467864032622473692149727991 ~ 2.4 x 103!
(10000) = 3.6 x 10106
(100000) ~ 2.7 x 10346
(

p(1000000) ~ 1.5 x 101107

1 m\/2n/3
(n) 3 €

°

p(n) has ~ n'/? digits

Euler’'s method to compute p(n)

Generating function (Euler, 1748):

ip(n)x" = ﬁ - —lxk — (i (_1)ka(3k—1)/2>_
n=0

k=1

k=—0o0

Recursive formula:

n

o) = 1 (o (n- FE) 4o (- 52

2
k=1

Complexity: O(n%/?) integer operations, O(n?) bit operations

Asymptotically fast vector computation

Use fast power series arithmetic to expand

% = p(0) + p(1)x + ... + p(m)x" + O(x"+1)

The complexity is quasi-optimal for computing p(0), ..., p(n)
simultaneously:

o O(n3/2+°(1)) bit operations over Z

o O(n**+°()) bit operations over Z/mZ for fixed m

Calkin et al (2007): computation of p(n) mod m for all n < 10° and
primes m < 103

The Hardy-Ramanujan-Rademacher formula

There is a better way to compute an isolated value of p(n), due to Hardy
and Ramanujan (1917), Rademacher (1936):

Ak(n) = Z emils(h, k) = %2nh]

0< h<k
ged(h,k)=1

)

1=

Explicit error bound by Rademacher: can truncate after O(n'/?) terms
such that the error is smaller than 1/2

How fast can we compute p(n) using the HRR formula?

1938: Lehmer manually computes p(599), p(721)

1995: Odlyzko claims that p(n) can be computed in quasi-optimal time,
but does not give a proof or an algorithm.

A few years ago:

@ Implementations in several computer algebra systems: Pari/GP,
Maple, Mathematica, Sage, etc. There are large differences in
performance. Many versions give wrong values.

@ No algorithmic analysis or implementation studies in the literature
o Largest reported values: p(n), n ~ 10°

New study

F. J. (2012). "Efficient implementation of the
Hardy—Ramanujan—Rademacher formula.”
LMS J. Comp. Math. 15(1): 341-359.

@ Proof that p(n) can be computed in quasi-optimal time

@ A new implementation, running up to ~ 500 times faster than
previous software (open source, part of FLINT,
http://flintlib.org)

@ Error bounds for the main numerical parts of the algorithm
@ Discussion of implementation issues and practical optimizations

@ Large-scale p(n) computation, including generation of congruences

http://flintlib.org

Quasi-optimality for isolated values of p(n)

Theorem
p(n) can be computed using O(nl/2 Iog4+°(1) n) = O(n1/2+0(1))
bit operations.

This is quasi-optimal since p(n) has ©(n!/?) bits.

@ Unlike many sequences for which quasi-optimal algorithms are known,
p(n) is not P-finite (holonomic)

@ Quasi-optimal algorithms are not known for e.g. isolated
Bell numbers (set partitions)

Cost of numerical evaluation
p(n) =N Tete N=0(n"2), log,|Tel = O(n'/2/k)

0(n'/?)

log, |Tk|

Total area: O(n'/?log n)

O(n1/2)

k

We can compute p(n) in quasi-optimal time, if we can approximate T in

quasi-optimal time.

10/32

Numerical evaluation of elementary functions

Tix = (Ak(n) : sum of roots of unity) x (hyperbolic function)

All numerical evaluation can be reduced to elementary functions:
exp
log
sin

sinh

e © ¢ ¢ ¢

Elementary functions can be evaluated to b-bit accuracy in quasi-optimal
time O(b'to(M),

11/32

Evaluating exponential sums

Naively:
@ O(Kk?) (integer/elementary function) operations for Ax(n)

@ O(n3/?) total (integer/elementary function) operations for p(n)

We need to get the cost for Ax(n) down to O(log® k) (integer/elementary
function) operations!

12/32

Fast computation of Dedekind sums

Let0 < h< kandlet k=ry,r1,...,rmr1 = 1 be the sequence of
remainders in the Euclidean algorithm for gcd(h, k). Then

1 2., 2
()™ -1 1 m+t g+l
hky=>~~~~/___ = — S Vi o A bt B

Fraction-free version by Knuth (1975).
@ O(log k) integer or rational operations to evaluate s(h, k)
@ O(klog k) integer operations to evaluate Ag(n)
@ O(nlog n) integer operations to evaluate p(n)

Still not good enough!

13/32

Evaluating Ax(n) using prime factorization

Whiteman (1956):
o If k = p¢, then

S Tr
ORI
o If k = kiky, ged(ki, ko) = 1, then
Ak(n) = Ak (m)Ak,(n2)

r,s,t,n, ny € Z are determined by equations involving modular square
roots, GCDs, Jacobi symbols, case distinctions.

Algorithm: factor k into prime powers to write Ax(n) as a product of
O(log k) cosines. Now the numerical evaluation becomes fast
enough!

14 /32

Cost of integer arithmetic

Factoring: we do not know how to factor k in O(log® k) time. However,
we can factor 1,. .., n'/2 simultaneously in time O(n'/?log n).

Integer arithmetic: multiplication, GCD, ...: O(log't°®) k)

Square roots mod p:
o O(log®°() p) using the Shanks-Tonelli algorithm
o O(log?™°(M p) using Cipolla’s algorithm

@ Must know a quadratic nonresidue mod p (by a result of Erdds, a
table for all p < n'/2 can be precomputed sufficiently quickly)

Total cost of integer operations for Ax(n): O(log3T°() k)

15/32

New implementation

2011:
@ Using FLINT (integers) + MPFR (arbitrary-precision floats)

@ A priori floating-point error bounds for the body of the algorithm
@ Many numerical “tricks” without complete error bounds

» Fast algorithms for 7, roots of unity, ...
» Using hardware double-precision arithmetic

2013:
@ Using FLINT + MPFR + Arb (new ball arithmetic library)
@ “Tricks” reimplemented as proper Arb library functions, with proofs

@ Code for p(n) is simpler, with complete error bounds

16 /32

Timings for p(n) (2011)

10°

10*
10%
102 E
10!
10°

Time (s)

10!
102 ;

10—3 i

1074 L — L L L L L L L L L -
10* 10° 10° 107 10° 10° 10 10' 10'2 10" 10 10% 10%
n

Mathematica 7 (green circles)
Sage 4.7 (red triangles)
FLINT (blue squares)

17 /32

Timings for p(n) (2011)

n Mathematica 7 | Sage 4.7 FLINT First term

10* 69 ms 1ms 0.20 ms

10° 250 ms 5.4 ms 0.80 ms

106 590 ms 41 ms 2.74 ms

107 24s 0.38s 0.010 s

108 11s 3.8s 0.041 s

10° 67 s 42 s 0.21s 43%
1010 340 s 0.88 s 53%
10M! 2,116 s 51s 48%
1012 10,660 s 20s 49%
1013 88 s 48%
1014 448 s 47%
1015 2,024 s 39%
106 6,941 s 45%
10%7 27,196* s 33%
1018 87,223* s 38%
10%° 350,172* s 39%

18 /32

Large values of p(n)

n Decimal expansion Num. digits Terms | Error
10% | 6129000962 . ..6867626906 1,113,996 264,526 | 10~
10%3 | 5714414687 ...4630811575 3,522,791 787,010 | 1078
101 | 2750960597 . ..5564896497 11,140,072 2,350,465 | 1078
10%° | 1365537729 ...3764670692 35,228,031 7,043,140 | 107°
10% | 9129131390...3100706231 111,400,846 | 21,166,305 | 10~°
10%7 | 8291300791 ...3197824756 352,280,442 | 63,775,038 | 10~°
108 | 1478700310...1701612189 | 1,114,008,610 | 192,605,341 | 10~
10%° | 5646928403 ...3674631046 | 3,522,804,578 | 582,909,398 | 10~

The number of partitions of ten quintillion:
p(10%°) = p(10000000000000000000) ~ 5.65 x 103:522:804,577

3.5 GB output, 97 CPU hours, ~ 150 GB memory

19/32

New timings (2013, on slightly faster hardware)

n Mathematica 8.0 FLINT* Arb**
10° | 0.328 s 0.00147 s 0.00478 s
10° | 23.7s 0.142 s 0.181 s
1012 | 2458 s 11.32 s 11.50 s
10'® | 307810 s 1109 s 1097 s
1018 66738 s 57102 s

* 2011 implementation: using MPFR + hardware doubles (with
incomplete error bounds)

** 2013 implementation: using ball arithmetic throughout to provably
determine p(n)

20/32

Partition function congruences

Ramanujan (1919): for all k € N,

p(5k +4) =0 (mod 5)
p(7k +5) =0 (mod 7)
p(1lk +6) =0 (mod 11)

Ono (2000): for every prime m > 5, there exist infinitely many
congruences of the type

p(Ak + B) =0 mod m

21/32

Algorithm to generate congruences (Weaver, 2001)

Defining tuple: (m, £, ¢)
o me {13,17,19,23,29, 31}
@ (> 5 prime
e ce{-1,0,1}
For certain X, Y, Z where X = O(£?), check the single case

p(X) =Y mod Z
If true, we obtain explicit A, B of size O(¢*) such that for all k,

p(Ak + B) =0 mod m

For a given tuple (m, ¢,¢), there are O(¢) such pairs A, B, enumerated by
an additional parameter 4.

22/32

Weaver's table

Weaver gives 76,065 congruences (167 tuples), obtained from a table of all
p(n) with n < 7.5 x 10° (computed using the recursive Euler algorithm).

Limit on ¢ ~ 103
Example: m =31
e =0: £ =107,229,283,383,463

e #0: (,¢) = (101,1),(179,1), (181,1), (193,1), (239, 1), (271, 1)

23 /32

New table

Testing all £ < 10° resulted in 22 billion new congruences (70,359 tuples).

This involved evaluating p(n) for 6(m(10°) — 3) = 470,970 distinct n, in
parallel on = 40 cores (hardware at University of Warwick, courtesy of Bill

Hart)

m | e= e=+1]|e=-1 Congruences CPU Max n
13| 6,189 | 6,000 | 6,132 | 5,857,728,831 | 448 h | 5.9 x 1072
17 | 4,611 | 4,611 4,615 | 4,443,031,844 | 391 h | 4.9 x 10%?
19 | 4,114 | 4,153 | 4,152 | 3,966,125,921 | 370 h | 3.9 x 10'2
23 | 3,354 | 3,342 | 3,461 | 3,241,703,585 | 125h | 9.5 x 101
20 | 2,680 | 2,777 | 2,734 | 2,629,279,740 | 1,155 h | 2.2 x 10%3
31 | 2,428 | 2,484 | 2522 | 2,336,738,093 | 972 h | 2.1 x 10%3
All | 23,376 | 23,367 | 23,616 | 22,474,608,014 | 3,461 h

24 /32

Examples of new congruences

Example 1: (13,3797, —1) with 6 = 2588 gives
p(711647853449k + 485138482133) = 0 mod 13

which we may easily confirm for kK < 100 by evaluation.

Example 2: (29,999959,0) with 6 = 999958 gives
p(28995244292486005245947069k + 28995221336976431135321047)

= 0 mod 29

This is out of reach for explicit evaluation (n ~ 10%%)

25/32

Download the data

http://www.risc.jku.at/people/fjohanss/partitions/

or

http://sage.math.washington.edu/home/fredrik/partitions/

26 /32

http://www.risc.jku.at/people/fjohanss/partitions/
http://sage.math.washington.edu/home/fredrik/partitions/

Comparison of algorithms for vector computation

n | Series (Z/13Z) | Series (Z) | HRR (all) | HRR (sparse)
10% 0.01s 0.1s 14s 0.001 s
10° 0.13 s 41s 41 s 0.008 s
100 14s 183 s 1430 s 0.08 s
107 14 s 0.7 s
108 173 s 8s
10° 2507 s 85 s

HRR competitive over Z: when n/c values are needed (our improvement:

¢ ~ 10 vs ¢ ~ 1000)

HRR competitive over Z/mZ: when O(n'/?) values are needed (speedup

for Weaver's algorithm: 1-2 orders of magnitude).

Most important advantages: little memory, parallel, resumable

Conclusions

@ Isolated values of p(n) can be computed fast, both in theory and in
practice

@ The HRR formula allows performing computations that are
impractical with power series methods

@ Care is required for both asymptotics and implementation details

@ Generalizations: other HRR-type series for special types of partitions
(into distinct parts, etc), and possibly other number-theoretical
computations

28 /32

