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Abstract

The problem of efficiently evaluating special functions to high precision has been consid-

ered by numerous authors. Important tools used for this purpose include algorithms for

evaluation of linearly recurrent sequences, and algorithms for power series arithmetic.

In this work, we give new baby-step, giant-step algorithms for evaluation of linearly

recurrent sequences involving an expensive parameter (such as a high-precision real

number) and for computing compositional inverses of power series. Our algorithms do

not have the best asymptotic complexity, but they are faster than previous algorithms

in practice over a large input range.

Using a combination of techniques, we also obtain efficient new algorithms for numer-

ically evaluating the gamma function Γ(z) and the Hurwitz zeta function ζ(s, a), or

Taylor series expansions of those functions, with rigorous error bounds. Our methods

achieve softly optimal complexity when computing a large number of derivatives to

proportionally high precision.

Finally, we show that isolated values of the integer partition function p(n) can be com-

puted rigorously with softly optimal complexity by means of the Hardy-Ramanujan-

Rademacher formula and careful numerical evaluation.

We provide open source implementations which run significantly faster than previously

published software. The implementations are used for record computations of the par-

tition function, including the tabulation of several billion Ramanujan-type congruences,

and of Taylor series associated with the Riemann zeta function.
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Zusammenfassung

Die effiziente Auswertung spezieller Funktionen mit hoher Genauigkeit ist schon von

vielen Autoren behandelt worden. Grundlegende Techniken in diesem Zusammenhang

sind Algorithmen zur Berechnung linearer Rekurrenzen und Algorithmen für Potenzrei-

henarithmetik.

In dieser Arbeit geben wir neue Baby-step-giant-step-Algorithmen zur Berechnung lin-

earer Rekurrenzen an, die einen teuren Parameter enthalten (zum Beispiel eine reelle

Zahl mit hoher Genauigkeit), sowie Algorithmen zur Umkehrung von Potenzreihen. Un-

sere Algorithmen haben zwar nicht die beste asymptotische Komplexität, doch sind sie

in der Praxis für einen großen Eingabebereich schneller als die bisherigen Algorithmen.

Durch eine Kombination verschiedener Techniken erhalten wir außerdem effiziente Al-

gorithmen zur numerischen Auswertung der Gammafunktion Γ(z) und der Hurwitz-

Zeta-Funktion ζ(s, a), bzw. der Taylorentwicklungen dieser Funktionen, zusammen mit

garantierten Fehlerschranken. Unsere Methoden haben quasi-optimale Komplexität,

wenn man eine große Zahl von Ableitungen zu entsprechend hoher Genauigkeit berech-

net.

Schließlich zeigen wir, dass isolierte Werte der Abzählfunktion p(n) von Integer-Parti-

tionen exakt und in quasi-optimaler Komplexität mit der Formel von Hardy-Ramanujan-

Rademacher und sorgfältiger Numerik berechnet werden können.

Wir stellen Open-Source-Implementierungen bereit, die signifikant schneller sind als

bisher publizierte Software. Diese Implementierungen werden zu Rekord-Berechnungen

der Partitionsfunktion verwendet, inklusive einer Auflistung von mehreren Milliarden

Ramanujan-Kongruenzen, und für Taylorentwicklungen im Zusammenhang mit der Rie-

mannschen Zeta-Funktion.
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Chapter 1

Introduction

One of the central tasks in computer algebra is the development of algorithms for com-

puting explicit values of mathematical functions. Humans – and increasingly also com-

puters – can look at computed data to search for patterns, leading to new conjectures

and ultimately new theorems [5, 19]. Explicit values are sometimes also required as

parts of proofs or in the execution of symbolic algorithms. It is important that the

algorithms and implementations we use are efficient (so that we can afford to compute

the data we desire) and reliable (so that we can be reasonably certain that the output

is actually correct).

Functions of particular interest are called special functions – by tradition, these are

the functions which appear frequently enough in applications to have been given names

(the gamma function, the Riemann zeta function, Bessel functions, and so on). A more

refined viewpoint is to consider special functions as solutions of differential, difference

or functional equations of certain types. One can then hope to develop theoretical or

computational tools that work for a whole class of functions, and gradually replace

ad-hoc methods with systematic procedures that can be automated by computers.

The objective of this thesis is to study algorithms that scale well for computation of

function values which are very large, or which need to be approximated to very high

precision. Scalable algorithms are crucial for attacking research problems in number

theory and combinatorics, but efficiency is also a concern for general use within mathe-

matical software.

This thesis provides a modest contribution to the already extensive algorithmic the-

ory concerning computation of special functions. We also attempt to reduce the gap

between theory and practice by implementing algorithms carefully and testing their per-

formance in the real world. We particularly hope to emphasize the idea that numerical

computation can be done with a high level of reliability without sacrificing performance.
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In chapter 2, we recall some fundamental algorithmic concepts, including fast multi-

plication of numbers, polynomials and matrices. This chapter also introduces notation

used throughout the work.

Chapter 3 treats the problem of quickly evaluating the n-th term in a sequence defined

by a linear recurrence equation. The terms can, for instance, be integers, real numbers,

polynomials, or power series. A particularly important case is the class of sequences

which are holonomic (or P -finite), meaning that the terms satisfy a linear recurrence

equation with polynomial coefficients. A large portion of the special functions arising in

applications are expressible (exactly or approximately) in terms of holonomic sequences,

and algorithms that solve this problem efficiently in the general case thus lead to efficient

algorithms for specific functions.

Well-known fast algorithms for evaluation of holonomic sequences include binary splitting

and fast multipoint evaluation. In section 3.5, we give an algorithm which becomes

efficient when the recurrence equation involves an “expensive” parameter (in a sense

which is made precise), based on the baby-step giant-step technique of Paterson and

Stockmeyer [87] (called rectangular splitting in [27]).

Our algorithm can be viewed as a generalization of the method given by Smith in [96]

for computing rising factorials. Conceptually, it also generalizes an algorithm given by

Smith in [95] for evaluation of hypergeometric series. Our contribution is to recognize

that rectangular splitting can be applied systematically to a very general class of se-

quences, and in an efficient way (we provide a detailed cost analysis, noting that some

care is required in the construction of the algorithm to get optimal performance).

The main intended application of rectangular splitting is high-precision numerical evalu-

ation of special functions, where the parameter is a real or complex number (represented

by a floating-point approximation). In section 3.6, we present implementation results

comparing several different algorithms for numerical evaluation of the gamma function

to very high precision.

Chapter 4 treats the problem of multi-evaluation of sequences, i.e. simultaneously com-

puting all the values

f(0), f(1), f(2), . . . , f(n− 1), f(n)

for a given n. This is trivial to do efficiently for linearly recurrent sequences. For more

general sequences, a well-known paradigm is to identify the terms with the (formal)

derivatives of a generating function, and evaluating an expression for the function using

power series arithmetic. Power series manipulations also allow doing various computa-

tions with functions as analytic objects.

We first discuss standard algorithms for manipulation of power series, including formal

composition and evaluation of elementary functions. In section 4.5, we then give a new
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algorithm for reversion of power series, or equivalently, computing the coefficients in the

series expansion of the compositional inverse of a given generating function. Two fast

algorithms for this problem were given by Brent and Kung in 1978 [25]. Our algorithm

is a baby-step giant-step version of the Lagrange inversion formula, analogous in spirit

to the first Brent-Kung algorithm which is a baby-step giant-step version of Horner’s

scheme. However, our algorithm is superior in two ways: it computes the reversion

directly without using Newton iteration, and it allows taking advantage of structured

matrix multiplication. Both differences are shown to give constant-factor speedups.

Benchmarks indicate that our algorithm, although asymptotically slower than the second

Brent-Kung algorithm, is the fastest algorithm in practice for reversion of power series

over a large range of input sizes.

Next, we study the problem of efficiently computing series expansions of some higher

transcendental functions to arbitrary precision. We study, in particular, the gamma

function Γ(z) in section 4.6, and the Hurwitz zeta function ζ(s, a) in section 4.8. The

Hurwitz zeta function is a key function to consider for numerical evaluation, as many

other transcendental functions and mathematical constants can be expressed in terms

of it. We state and implement – to our knowledge for the first time – a complete

algorithm to evaluate ζ(s, a) with rigorous error bounds for any values of s and a and

for derivatives of arbitrary order. We make several observations regarding efficiency,

and note that fast polynomial arithmetic can be exploited to achieve softly optimal

complexity when computing a large number of derivatives.

Our implementation allows us to study the asymptotics of Taylor series coefficients

associated with the Hurwitz zeta function. In particular, we provide explicit compu-

tations which show support for the conjectured asymptotic growth of the Keiper-Li

coefficients (constituting empirical evidence for the Riemann hypothesis, although it

should be stressed that this evidence is weaker than already published data based on

explicit evaluation of zeros along the critical line). We also obtain asymptotic data about

the Stieltjes constants. Compared to previous works, our contribution is twofold: our

implementation allows us to reach coefficients of higher index (roughly 105 on present

hardware), and our numerical values come with rigorous error bounds.

Finally, chapter 5 treats evaluation of the integer partition function p(n). Fast simul-

taneous evaluation of the consecutive values p(0), . . . , p(n) can easily be accomplished

using power series methods, but computing isolated values more quickly is challenging.

The values of the partition function form a non-holonomic sequence, and cannot (as

far as anyone currently knows) be approached using techniques such as those discussed

in chapter 3. Instead, the best known method is to compute a sufficiently accurate

numerical approximation of a certain infinite series involving irrational numbers, the

Hardy-Ramanujan-Rademacher (HRR) formula.
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Here our contribution is to give the first comprehensive algorithmic analysis of the HRR

formula. We prove that isolated values of the partition function can be computed with

complexity that is nearly the best possible. This is a nontrivial result. We also discuss

implementation aspects and present an implementation which runs with nearly-optimal

complexity in practice, gaining more than a 100-fold speedup over previously published

implementations. We are able to exactly determine values as large as p(1019) – an

integer with 3.5 billion digits. Extending previous work done by Weaver [109], we use

the implementation to find several billion new Ramanujan-type congruences for the

partition function.

This thesis is substantially based on a series of standalone papers penned by the author.

Chapter 3 is an extended version of [54]. Chapter 4 is largely based on the papers [56]

and [55]. The discussion about reversion includes an improved presentation of matrix

multiplication algorithms and an added discussion about power series with numerical

coefficients. The section about the power series of the gamma function is also new.

Chapter 5 is based on [52], with a completely rewritten discussion regarding numeri-

cal evaluation, along with new implementation remarks. In general, the introductory

content from the aforementioned papers has been reworked and expanded to unify the

presentation.

Most of the algorithms covered in this thesis have been implemented using the Fast

Library for Number Theory (FLINT) [47], which is joint work with William Hart and

Sebastian Pancratz (as well as numerous contributors). To support asymptotically fast

and provably correct computation with real and complex numbers, the author has de-

veloped the Arb library [53], based on the concept of ball arithmetic. We give a brief

survey of the FLINT and Arb libraries in Appendix A.
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Chapter 2

Arithmetic

In this chapter, we review standard techniques for computing with numbers and poly-

nomials. We only briefly discuss concepts and notations required for the later chapters,

without going into too many details. The reader can find more background material in

the books by Knuth [64], von zur Gathen and Gerhard [107], and Brent and Zimmer-

mann [27].

2.1 Complexity of algorithms

When analyzing the efficiency of an algorithm, we usually count the number of bit or

word operations executed on a serial machine. This measure, which we synonymously

call bit complexity or time complexity, roughly models the actual running time of an

implementation on a physical computer. It can, however, be inaccurate since it discounts

aspects such as parallelism and memory access costs.

In many cases, it is more convenient to count the number of ring operations (+, −, ×,
equality test) in some (computable) ring R. This measure is only loosely suggestive of

practical efficiency, since ring elements may take a variable amount of space to represent

and require a variable amount of bit operations to operate on. In general, we can convert

a bound expressed in terms of ring operations to a bit complexity bound if we are able

to bound the size of the occurring elements and have a bit complexity bound for ring

operations done on elements of given size.

As usual, O(f(n)) denotes the class of functions bounded by constant multiples of f(n)

for all sufficiently large n and O˜(f(n)) denotes the class of functions asymptotically

bounded by f(n) times polynomials in log(f(n)) (see section 25.7 in [107] for precise

definitions). If g(n) = O˜(f(n)), we may also write g(n) = O(f(n)1+o(1)) or g(n) =

O(f(n)1+ε). If f(n) = O˜(n), we call f(n) softly linear or quasilinear. If f(n) is a lower
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bound for the complexity of solving a given problem of size n, we say that an algorithm

with complexity O˜(f(n)) is softly optimal or quasioptimal. We also occasionally use

the notations Ω(f(n)) (for lower bounds) and Θ(f(n)) (for two-sided bounds).

2.2 Fast multiplication

A useful technique when constructing algorithms is to reduce the solution of a problem to

a combination of well-understood “primitive” operations. This helps theoretical analysis

(we can rely on nontrivial proven complexity bounds for the primitive operations), and in

practical implementations (we directly benefit from the availability of highly optimized

library routines for the primitive operations). In computer algebra, the most important

primitive operation is multiplication in various base rings. Bernstein [9] provides a good

survey of algorithms for fast multiplication, and techniques for reducing problems to

multiplication.

We frequently use the following multiplication complexity bounds. In each case, when

we refer to the complexity of multiplication, we actually refer to the complexity with an

arbitrary but fixed multiplication algorithm (which need not be the fastest possible).

• MR[x](n) denotes a bound for the number of ring operations required to mul-

tiply two polynomials of degree at most n with coefficients in a ring R. The

classical multiplication algorithm gives MR[x](n) = O(n2) and the Karatsuba

algorithm gives MR[x](n) = O(nlog
2
3) = O(n1.585). If R contains sufficiently

many roots of unity, the fast Fourier transform (FFT) allows multiplying poly-

nomials using MR[x](n) = O(n log n) operations, which is softly optimal. When

R does not have sufficiently many roots of unity, softly optimal multiplication

is still possible by moving to an extension ring containing “artificial” roots of

unity and then multiplying using the FFT. For an arbitrary ring R, we have

MR[x](n) = O(n log n log log n) by the Cantor-Kaltofen theorem [30, 7].

FFT multiplication of polynomials is used in practice and exhibits the expected

quasilinear complexity for many common rings R. The range of n where it becomes

worthwhile is highly sensitive to implementation details.

• MZ(n) denotes a bound for the number of bit (or word) operations required to

multiply two n-bit integers. The algorithms and complexity bounds for integers

are quite similar to those for polynomials (in fact, it is common in implementations

to express one operation in terms of the other). In particular, we have MZ(n) =

O(n log n log log n) by the Schönhage-Strassen algorithm [9]. The best current

bound for integer multiplication is Fürer’s MZ(n) = n log n 2O(log∗ n), where log∗ n

denotes the iterated logarithm.
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Modern implementations of arbitrary-precision integer arithmetic such as GMP

and MPIR [41, 79] switch between several multiplication algorithms: typically

classical multiplications is used below about 103 bits, Karatsuba multiplication

(or the higher-order Toom-Cook variants) is used for larger integers up to about

105 or 106 bits, and an FFT algorithm such as the Schönhage-Strassen algorithm is

used for even larger integers. The asymptotic quasilinearity of FFT multiplication

is very clearly realized in practice for numbers with millions or billions of digits.

• MMR(n) denotes a bound for the number of ring operations required to mul-

tiply two n × n matrices with coefficients in a commutative ring R. We have

MMR(n) = O(n3) using classical multiplication and O(n2.807) using the Strassen

algorithm. The best known bound is O(n2.3727), due to Stothers [98] and Vas-

silevska Williams [104]. On present-day hardware, only the classical algorithm

and Strassen’s algorithm are considered practical. If MMR(n) = O(nω) for some

2 < ω ≤ 3, we call ω an exponent of matrix multiplication.

The ring is usually clear from the context, in which case we simply writeM(n) orMM(n).

We implicitly assume that the complexity bounds satisfy natural regularity conditions

such as M(n+m) ≥ M(n) +M(m).

We sometimes consider unbalanced multiplications. IfM(n,m) denotes the complexity of

multiplying two polynomials of respective degrees n and m where n ≥ m, we can assume

that M(n,m) ≤ M(n, n) = M(n). When n≫ m, we can do better by breaking the single

multiplication into several balanced multiplications, giving M(n,m) = ⌈n/m⌉M(m) +

O(n). The analogous statements hold for the bit complexity of unbalanced integer

multiplication.

Likewise, unbalanced matrices can be multiplied by breaking them into smaller square

blocks. Remarkably, Huang and Pan have shown [51] that this strategy is subopti-

mal for highly unbalanced matrices with the best presently known algorithms. Letting

MM(x, y, z) denote the complexity of multiplying a matrix of size x × y by a matrix

of size y × z, and taking m = n1/2, Huang and Pan obtain MM(m,m,n) = O(n1.667)

whereas repeated multiplication of square matrices costs mMM(m,m,m) = O(n1.687)

with the Stothers-Vassilevska Williams algorithm.

2.3 Computing with real numbers

In general, an algorithm purported to work with elements of a ring R only makes sense if

R is computable (or effective), meaning that any element of R can be represented using

a finite number of bits and that arithmetic operations can be carried out using a finite

number of steps. We typically also require that determining whether a given element is

7



zero can be done using a finite number of steps. Examples of computable rings include

Z, Q(
√
−1) and (Z/3Z)[x, y].

The rings R and C are not computable in this sense, and yet we are often forced to work

with them in applications. Fortunately, for many purposes, it is sufficient to replace real

numbers by rational approximations. We can then carry out arithmetic operations on

the approximations, and determine bounds for any propagated errors.

We can, in particular, represent a real number x by a ball X = x̂ ± r := [x̂ − r, x̂ + r]

such that x ∈ X, where x̂, r ∈ Q and r ≥ 0. If y = f(x) where f : R → R is some

function, we may attempt to approximate y by a ball Y = ŷ ± s such that f(X) ⊆ Y .

For sufficiently “nice” functions (which we need not precisely characterize here), we can

always compute an output ball such that s → 0 when r → 0. In general, functions

with discontinuities such as f(x) = ⌊x⌋ are not “nice”. In particular, we cannot tell if

a real number represented by a ball is zero (without additional information). We can,

however, prove that a number resulting from the composition of “nice” functions is not

zero, by computing a sufficiently precise approximation.

For efficiency reasons, it is preferable to choose floating-point numbers as rational ap-

proximations. A binary floating-point number is a rational number a× 2b where a ∈ Z

is called the mantissa (or significand) and b ∈ Z is called the exponent. It should be

noted that some authors define the parts of a floating-point number slightly differently,

but the distinction does not matter for our purposes. A nonzero floating-point number

can be put in canonical form by choosing a such that 2 ∤ a (zero can be represented

canonically by a = b = 0). It is convenient to adjoin the special values −∞, +∞ and

NaN (not-a-number) to the set of floating-point numbers to allow representing limits

and to allow any floating-point operation to have a well-defined result for any input.

To prevent coefficient explosion, it is crucial to round floating-point numbers. Rounding

the mantissa of a floating-point number x to precision p bits, i.e. choosing a such that

|a| < 2p, generally introduces a rounding error of order |x|2−p. When rounding the

midpoint x̂ of a ball x̂± r, we must take care to add an upper bound for the rounding

error to the radius r (this addition can also be done as a floating-point operation,

rounding upwards if necessary).

For a floating-point approximation x̂ ≈ x, we define the absolute error as |x− x̂| and the

relative error as |x − x̂|/|x|, or when measuring in bits, the respective log2 values. We

also define accuracy as the inverse of error (or the negation of the error when measuring

in bits). We informally refer to the radius r of any ball x̂ ± r as its error, although

strictly speaking this is just an upper bound for the true error of the midpoint.

In most situations, numerically evaluating a fixed expression using a working precision

of p bits results in an absolute or relative accuracy of p + O(1) bits. If numerical
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evaluation with a working precision of p bits costs C(p), we can therefore usually compute

the result to an accuracy of n bits at a cost of O(C(n)). A common trick when the O(1)

term is unknown is to first make a reasonable guess, and then repeatedly double the

precision until convergence. However, we need to be careful when the expression we

are evaluating varies along with the precision. See in particular the remarks about

polynomials below.

Addition, multiplication, division and square root of p-bit floating-point numbers have

the same complexity as the corresponding integer operations, up to a constant factor

(we ignore the cost of manipulating the exponent, which for most practical purposes can

be assumed to lie in a fixed range).

The elementary transcendental functions (exp, log, sin, atan, etc.) can be computed

to high precision in nearly linear time. The fastest known algorithm is based on the

arithmetic-geometric mean (AGM), and allows approximating log x (where the number x

is held fixed) to p-bit accuracy in O(M(p) log p) bit operations. One can obtain all other

elementary functions with at most a constant factor slowdown using complex arithmetic

and Newton iteration.

An alternative way to evaluate elementary functions is to use Taylor series. Combined

with use of functional equations, one can achieve a complexity of O(M(p) log2 p) for

elementary functions, and in practice these algorithms are often faster than AGM-based

methods. Moreover, such techniques also generalize to evaluation of many higher tran-

scendental functions. We discuss techniques applicable to fast evaluation of Taylor series

further in chapter 3.

The principle of attaching error bounds to floating-point numbers can be extended to

numerical computations involving complex numbers, polynomials, matrices, and other

objects. This technique is known as ball arithmetic [103].

2.4 Computing with polynomials

Arithmetic operations on polynomials can generally be reduced to polynomial multipli-

cation and performed with complexity that is softly optimal in the size of the problem.

Polynomials in Z[x] of degree n and coefficients at most p bits can be multiplied using

O˜(np) bit operations (Corollary 8.27 in [107]). In practice, we often have p = O˜(n),

making the effective complexity of working with degree-n integer polynomials O˜(n2).

Arithmetic in Q[x] can be reduced to arithmetic in Z[x] by clearing denominators.

Fast multiplication of polynomials in R[x] and C[x] represented using floating-point (or

ball) coefficients can either be done directly using FFT or by truncating to integer poly-
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nomials on a common power-of-two exponent and multiplying exactly in Z[x]. The latter

algorithm has the advantage that rounding error is introduced only when converting to

and back from an integer polynomial, and not for each arithmetic operation in the mul-

tiplication (however, a separate computation is required to bound the propagated errors

from the input polynomials). It also has the advantage that we avoid the overhead of

doing a large number of arithmetic operations on individual numerical coefficients.

With numerical coefficients, the accuracy of the output polynomial can be much lower

than the working precision, depending on the shape of the input polynomials and the de-

tails of error propagation in the multiplication algorithm. If all coefficients have roughly

the same magnitude, then the loss of accuracy when multiplying degree-n polynomials

is generically of order log n bits. In practice, it is often the case that the coefficients vary

as log |ck| ∼ ±k logO(1) k . Therefore, we generically need O˜(n) bits of precision to get

an accurate result, making the effective complexity for arithmetic with degree-n polyno-

mials O˜(n2). This problem can sometimes be mitigated by rescaling polynomials and

splitting them into smaller blocks, as discussed by van der Hoeven [102].
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Chapter 3

Evaluating linearly recurrent

sequences

A sequence (usually denoted by (c(i))∞i=0, or just c(i) or ci) is a function from the natural

numbers Z≥0 to some set V . In this chapter, we study ways to compute a single value

c(n) quickly when n is large, provided that the sequence c(i) satisfies a linear recurrence

equation of suitable type.

The terms in a sequence are sometimes objects of inherent interest, for instance due

to having combinatorial significance. Sometimes the terms in a sequence are used to

approximate a limiting value. For example, the sequence of rational numbers s0 = 1,

si = si−1+1/i! converges rapidly to e ≈ 2.71828, and one way to approximate e to high

precision is to compute sn for some large n. This can be done more efficiently than by

explicitly computing s0, s1, . . . , sn−1, sn one by one.

3.1 Holonomic sequences and functions

A sequence (c(i))∞i=0 is called holonomic (or P-finite) of order r if it satisfies a linear

recurrence equation

ar(i)c(i + r) + ar−1(i)c(i + r − 1) + . . . + a0(i)c(i) = 0 (3.1.1)

where a0, . . . , ar are polynomials. The class of holonomic sequences enjoys many useful

closure properties: for example, holonomic sequences form a ring, and if c(i) is holo-

nomic then so is the sequence of partial sums s(n) =
∑n

i=0 c(i). A sequence is called

hypergeometric if it is holonomic of order r = 1. The sequence of partial sums of a

hypergeometric sequence is holonomic of order (at most) r = 2.

Likewise, an analytic function or formal power series f(x) is called holonomic (or D-
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finite) of order r if it satisfies a linear differential equation with polynomial coefficients

ar(x)f
(r)(x) + ar−1(x)f

(r−1)(x) + . . .+ a0(x)f(x) = 0 (3.1.2)

This is equivalent to the condition that the coefficients in the Taylor series of f(x) form

a holonomic sequence (the orders of the respective differential and difference equations

may generally be different). Holonomic functions form a ring (equivalently, the Cauchy

product d(n) =
∑n

i=0 c1(i)c2(n− i) of two holonomic sequences is holonomic) and yield

new holonomic functions upon differentiation, integration, or right-composition by al-

gebraic functions.

Many integer and polynomial sequences of interest in number theory and combinatorics

are holonomic, and the power series expansions of many well-known special functions

(such as the exponential function, sine, cosine, logarithm, arctangent, error function,

and the Bessel functions) are holonomic.

Example 3.1.1. The sequence t(k) = 1/k! is holonomic of order r = 1, satisfying the

recurrence equation (k + 1)t(k + 1) − t(k) = 0 together with the initial value t(0) = 1.

The sequence u(k) = xkt(k) is also holonomic of order r = 1, satisfying (k + 1)u(k +

1)− xu(k) = 0 with initial value u(0) = 1.

The sequence s(k) =
∑k

i=0 u(k) is holonomic of order r = 2, satisfying the recurrence

equation

(k + 2)s(k + 2)− (x+ k + 2)s(k + 1) + xs(k) = 0

together with initial values s(0) = 1, s(1) = 1 + x. The exponential function can be

computed as exp(x) = limn→∞ s(n).

A particularly nice property of the class of holonomic sequences and functions is that the

closure properties can be carried out algorithmically. If we have algorithms for efficiently

evaluating holonomic sequences of general form, it is possible to mechanically go from a

specific symbolically defined holonomic function to a recurrence equation, and then to

an efficient evaluation scheme for that function.

Some of the algorithms we describe below apply to more general linearly recurrent

sequences, but we usually restrict the discussion to holonomic sequences for simplicity.

3.2 Recurrences in matrix form

Instead of working directly with order-r scalar recurrences such as (3.1.1), it is conve-

nient to work with vector recurrences. Let R be a commutative ring with unity and of

sufficiently large characteristic where necessary. Consider a sequence of length-r vectors
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(c(i) = (c1(i), . . . , cr(i))
T )∞i=0 satisfying a recurrence equation of the form









c1(i+ 1)
...

cr(i+ 1)









= M(i)









c1(i)
...

cr(i)









(3.2.1)

where M ∈ R[k]r×r (or Quot(R)(k)r×r) and where M(i) denotes entrywise evaluation.

Given an initial vector c(0), our goal is to evaluate the single vector c(n) for some n > 0,

where we assume that no denominator in M vanishes for 0 ≤ i < n.

A scalar recurrence of the form (3.1.1) can be rewritten as (3.2.1) by taking the vector

to be c̃(i) = (c(i), . . . , c(i+ r − 1))T and setting M to the companion matrix

M =
1

ar













ar
. . .

ar

−a0 −a1 . . . −ar−1













. (3.2.2)

In either case, we call the sequence holonomic (of order r).

Through repeated application of the recurrence equation, c(n) can be evaluated using

O(r2n) arithmetic operations (or O(rn) if M is companion) and temporary storage of

O(r) values. We call this strategy the naive algorithm.

The naive algorithm is not generally optimal for large n. The idea behind faster algo-

rithms is to first compute the matrix product

P (0, n) =

n−1
∏

i=0

M(i). (3.2.3)

and then multiply it by the vector of initial values (matrix multiplication is of course

noncommutative, and throughout this chapter the notation in (3.2.3) is understood to

mean M(n − 1) . . .M(2)M(1)M(0)).

Using a matrix product increases the cost to O(rωn) arithmetic operations where ω is

the exponent of matrix multiplication, but we can save time for large n by exploiting

the structure in the matrix product (we assume in the remainder of this chapter that r

is fixed, and omit O(rω) factors from any complexity estimates).

The improvement is most dramatic when all matrix entries are constant, e.g. in the case

of Fibonacci numbers
(

Fi+1

Fi+2

)

=

(

0 1

1 1

)(

Fi

Fi+1

)

,

allowing binary exponentiation (requiring O(log n) arithmetic operations) or diagonal-

ization to be used.
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The case of constant coefficients is rather special, however. Techniques that work with

nonconstant coefficients include binary splitting, which gives a near-optimal asymptotic

speedup for certain types of coefficients, and fast multipoint evaluation which is the

asymptotically fastest known algorithm for holonomic sequences with general coeffi-

cients. We discuss these algorithms in the following sections, and finally discuss new

algorithms based on the idea of rectangular splitting.

From this point, we may view the problem of evaluating a term in a holonomic sequence

as that of evaluating a matrix product (3.2.3) for some M ∈ R[k]r×r. It is not a

restriction to demand that the entries of M are polynomials: if M = M̃/q, we can write

P (0, n) = P̃ (0, n)/Q(0, n) where

P̃ (0, n) =

n−1
∏

i=0

q(i)M̃ (i)

and

Q(0, n) =

n−1
∏

i=0

q(i).

This reduces the problem to evaluating two denominator-free products, where the second

product has order 1.

It is important to stress the usefulness of the matrix approach to working with sequences,

as it often allows replacing clever formula manipulations with trivial matrix arithmetic.

This viewpoint is enunciated by Bernstein [9] who provides an extensive bibliography

and lists numerous applications of the idea. We can either implement computations

directly in terms of matrices, or view a matrix algorithm as a “meta-algorithm” from

which we can construct and analyze algorithms for specific sequences.

3.3 Binary splitting

In the binary splitting algorithm, we recursively compute a product of square matrices

P (a, b) =
∏b−1

i=a M(i) as P (m, b)P (a,m) wherem = ⌊(a+ b)/2⌋. Here the entries ofM(i)

need not necessarily be polynomials of i as in the holonomic case, but can be arbitrary

functions of i. Binary splitting becomes useful when the entries of the individual factors

M(i) are small, and the entries of partial products grow with the number of factors.

Then this scheme balances the sizes of the subproducts in a way that allows us to take

advantage of fast multiplication.

For example, take M(i) ∈ R[x]r×r where the polynomials in M(i) have bounded degree

(note that the variable x used here has a different role than the variable k used in the

previous section). Then P (a, b) has entries in R[x] of degree O(b−a), and binary splitting

can be shown to compute P (0, n) using O(M(n) log n) operations in R, using O(n) extra
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storage. If the matrix entries are not constant polynomials, the output has degree Θ(n),

making the binary splitting softly optimal. This is a significant improvement over the

naive algorithm, which in general uses O(n2) coefficient operations to generate the n-th

entry in a holonomic sequence of polynomials.

Analogously, binary splitting reduces the bit complexity from O˜(n2) to O˜(n) for

computing matrix products over Z or Q (or any algebraic number field) whenever the

bit size of M(i) for 0 ≤ i < n grows at most as logO(1) n. In particular, this result applies

to the evaluation of holonomic sequences, in which M(i) has entries of size O(log n).

For example, we can use binary splitting to evaluate the sequence of partial sums s(n)

of the Taylor series of exp(x) (per Example 3.1.1). If x is a rational number, binary

splitting allows us to compute exp(x) to a precision of p bits using O˜(p) bit operations.

This observation was made in 1976 by Brent [21].

If x is a real number with a precision of p bits, binary splitting does not provide a

speedup over the O˜(p2) naive algorithm if applied directly to the same sum, but as

Brent noted in [21], we can compute exp(x) in softly optimal time O˜(p) as

exp(x) = exp(x1) exp(x2) · · · exp(xm)

where

x = x1 + x2 + . . .+ xm

and xi extracts 2i bits from the binary expansion of x (this balances the number of

terms required in the Taylor series against the bit size of the terms). A variation of this

idea works for computing other elementary functions with softly optimal complexity.

In fact, for any function f(x) satisfying a holonomic differential equation with ratio-

nal (or algebraic) coefficients, we can compute f(x) in softly optimal time O˜(p) for a

fixed real or complex number x, by repeatedly translating the differential equation to

points x1, . . . , xm as in Brent’s algorithm for the exponential. This method was devel-

oped by Chudnovsky and Chudnovsky [32], who named it the bit-burst algorithm, and

independently with improvements by van der Hoeven [100].

The bit-burst algorithm is used for evaluation of elementary functions in several libraries,

and the general version for holonomic functions has been analyzed and implemented by

Mezzarobba [75, 76, 77].

The binary splitting algorithm has been rediscovered or reapplied many times in different

forms. Further discussion of the method and extensive bibliographic information can be

found in [13], [44], [9] and [27].
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3.4 Fast multipoint evaluation

The fast multipoint evaluation method is useful for fast evaluation of holonomic se-

quences when all arithmetic operations are assumed to have uniform cost. It is useful,

for example, when all operations are done on floating-point numbers with the same

precision, or when evaluating sequences over finite fields.

Fast multipoint evaluation allows evaluating a polynomial p ∈ R[k] of degree d simul-

taneously at d points using O(M(d) log d) operations in R, with temporary storage of

O(d log d) coefficients. The idea is that evaluating p(c) is equivalent to computing the

remainder of p upon polynomial division by k−c, so several remainders can be computed

quickly as remainders by (k − c1) · · · (k − cn) in a tree-like fashion.

Applying fast multipoint evaluation to a polynomial matrix product, we obtain Algo-

rithm 3.4.1, which is due to Chudnovsky and Chudnovsky [31].

Algorithm 3.4.1 Polynomial matrix product using fast multipoint evaluation

Input: M ∈ R[k]r×r, n = m× w

Output:
∏n−1

i=0 M(i)

1: [T0, T1, . . . , Tm−1]← [M(k),M(k + 1), . . . ,M(k +m− 1)]

⊲ Compute entrywise Taylor shifts of the matrix

2: U ←∏m−1
i=0 Ti ⊲ Binary splitting in R[k]r×r

3: [V0, V1, . . . , Vw−1]← [U(0), U(m), . . . , U((w − 1)m)] ⊲ Fast multipoint evaluation

4: return
∏w−1

i=0 Vi ⊲ Repeated multiplication in Rr×r

We assume for simplicity of presentation that n is a multiple of the parameter m (in

general, we can take w = ⌊n/m⌋ and multiply by the remaining factors naively).

Taking m ∼ n1/2, Algorithm 3.4.1 requires O(M(n1/2) log n) arithmetic operations in

the ring R, using O(n1/2 log n) temporary storage during the fast multipoint evaluation

step.

Bostan, Gaudry and Schost [18] improve the algorithm to obtain an O(M(n1/2)) opera-

tion bound, which is the best available result for evaluating the n-th term of a holonomic

sequence over a general ring. Algorithm 3.4.1 and some of its applications are studied

further by Ziegler [112].

3.5 Rectangular splitting

We now consider holonomic sequences whose recurrence equation involves coefficients

from a commutative ring C with unity as well as an additional, distinguished parame-

ter x. The setting is as in the previous sections, but with R = C[x]. In other words, we
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are considering holonomic sequences of polynomials of the parameter. This is equiva-

lent to considering sequences of rational functions of the parameter, since we can clear

denominators. We make the following definition.

Definition 3.5.1. A holonomic sequence (c(n) ≡ c(x, n))∞n=0 is parametric over C (with

parameter x) if it satisfies a linear recurrence equation of the form (3.2.1) with M ∈ R[k]

where R = C[x].

Let H be a commutative C-algebra, and let c(x, k) be a parametric holonomic se-

quence defined by a recurrence matrix M ∈ C[x][k]r×r together with an initial vector

c(z, 0) ∈ Hr.

Given some z ∈ H and n ∈ N, we wish to compute the single vector c(z, n) ∈ Hr

efficiently subject to the assumption that operations in H are expensive compared to

operations in C. Accordingly, we distinguish between:

• Coefficient operations in C

• Scalar operations in H (additions in H and multiplications C ×H → H)

• Nonscalar multiplications H ×H → H

As a general principle, we wish to avoid nonscalar multiplications.

Example 3.5.2. The sequence of rising factorials

c(x, n) = xn = x(x+ 1) · · · (x+ n− 1)

is first-order holonomic (hypergeometric) with the defining recurrence equation

c(x, n+ 1) = (n + x)c(x, n),

and parametric over C = Z. In some applications, we wish to evaluate c(z, n) for z ∈ H

where H = R or H = C.

The Paterson-Stockmeyer algorithm [87] solves the problem of evaluating a polynomial

P (x) =
∑n−1

i=0 pix
i with pi ∈ C at x = z ∈ H using a reduced number of nonscalar

multiplications. The idea is to write the polynomial as a rectangular array

P (x) = (p0 + . . .+ pm−1x
m−1)

+ (pm + . . .+ p2m−1x
m−1)xm

+ (p2m + . . .+ p3m−1x
m−1)x2m

+ . . .

(3.5.1)

17



After computing a table containing x2, x3, . . . , xm−1, the inner (rowwise) evaluations can

be done using only scalar multiplications, and the outer (columnwise) evaluation with

respect to xm can be done using about n/m nonscalar multiplications. With m ∼ n1/2,

this algorithm requires O(n1/2) nonscalar multiplications and O(n) scalar operations.

A straightforward application of the Paterson-Stockmeyer algorithm to evaluate each en-

try of
∏n−1

i=0 M(x, i) ∈ C[x]r×r yields Algorithm 3.5.1 and the corresponding complexity

estimate of Theorem 3.5.3.

Algorithm 3.5.1 Polynomial matrix product and evaluation using rectangular splitting

Input: M ∈ C[x][k]r×r, z ∈ H, n = m× w

Output:
∏n−1

i=0 M(z, i) ∈ Hr×r

1: [T0, . . . , Tn−1]← [M(x, 0), . . . ,M(x, n − 1)]

⊲ Evaluate matrix w.r.t. k, giving Ti ∈ C[x]r×r

2: U ←
∏n−1

i=0 Ti ⊲ Binary splitting in C[x]r×r

3: V ← U(z)

⊲ Evaluate U entrywise using Paterson-Stockmeyer with step length m

4: return V

Theorem 3.5.3. The n-th entry in a parametric holonomic sequence can be evaluated

using O(n1/2) nonscalar multiplications, O(n) scalar operations, and O(M(n) log n) co-

efficient operations.

Proof. We call Algorithm 3.5.1 with m ∼ n1/2. Letting d = max degk M and e =

maxdegxM , computing T0, . . . , Tn−1 takes O(nde) = O(n) coefficient operations. Since

degx Ti ≤ e, generating U using binary splitting costs O(M(n) log n) coefficient oper-

ations. Each entry in U has degree at most ne = O(n), and can thus be evaluated

using O(n1/2) nonscalar multiplications and O(n) scalar operations with the Paterson-

Stockmeyer algorithm.

If we only count nonscalar multiplications, Theorem 3.5.3 is an asymptotic improvement

over fast multipoint evaluation which uses O(n1/2 log2+o(1) n) nonscalar multiplications

(O(n1/2 log1+o(1) n) with the improvement of Bostan, Gaudry and Schost).

Algorithm 3.5.1 is not ideal in practice since the polynomials in U grow to degree O(n).

Their coefficients also grow to O(n log n) bits when C = Z (for example, in the case of

rising factorials, the coefficients are the Stirling numbers of the first kind S(n, k) which

grow to a magnitude between (n− 1)! and n!).

This problem can be mitigated by repeatedly applying Algorithm 3.5.1 to successive

subproducts
∏a+ñ

i=a M(z, i) where ñ≪ n, but the nonscalar complexity is then no longer

the best possible.
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A better strategy is to apply rectangular splitting to the matrix product itself, leading to

Algorithm 3.5.2. We can then reach the same operation complexity while only working

with polynomials of degree O(n1/2), and over C = Z, having coefficients of bit size

O(n1/2 log n).

Theorem 3.5.4. For any choice of m, Algorithm 3.5.2 requires O(m + n/m) non-

scalar multiplications, O(n) scalar operations, and O((n/m)M(m) logm) coefficient op-

erations. In particular, the complexity bounds stated in Theorem 3.5.3 also hold for

Algorithm 3.5.2 with m ∼ n1/2. Moreover, Algorithm 3.5.2 only requires storage of

O(m) elements of C and H, and if C = Z, the coefficients have bit size O(m logm).

Proof. This follows by applying a similar argument as used in the proof of Theorem 3.5.3

to the operations in the inner loop of Algorithm 3.5.2, noting that U has entries of degree

m degxM = O(m) and that the matrix multiplication S × V requires O(1) nonscalar

multiplications and scalar operations (recalling that we consider r fixed).

Algorithm 3.5.2 Improved polynomial matrix product and evaluation using rectangu-

lar splitting

Input: M ∈ C[x][k]r×r, z ∈ H, n = m× w

Output:
∏n−1

i=0 M(z, i) ∈ Hr×r

1: Compute power table [zj , 0 ≤ j ≤ m degxM ]

2: V ← 1Hr×r ⊲ Start with the identity matrix

3: for i← 0 to w − 1 do

4: [T0, . . . , Tm−1]← [M(x, im + j)]m−1
j=0

⊲ Evaluate matrix w.r.t. k, giving Tj ∈ C[x]r×r

5: U ←
∏m−1

j=0 Tj ⊲ Binary splitting in C[x]r×r

6: S ← U(z) ⊲ Evaluate w.r.t. x using power table

7: V ← S × V ⊲ Multiplication in Hr×r

8: return V

3.5.1 Variations

Many variations of Algorithm 3.5.2 are possible. Instead of using binary splitting directly

to compute U , we can generate the bivariate matrix

Wm =

m−1
∏

i=0

M(x, k + i) ∈ C[x][k]r×r (3.5.2)

at the start of the algorithm, and then obtain U by evaluating Wm at k = 0,m, 2m, . . ..

We may also work with differences of two successive U (for small m, this can introduce

cancellation resulting in slightly smaller polynomials or coefficients). Combining both
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variations, we end up with Algorithm 3.5.3 in which we expand and evaluate the bivariate

polynomial matrices

∆m =

m−1
∏

i=0

M(x, k +m+ i)−
m−1
∏

i=0

M(x, k + i) ∈ C[x][k]r×r.

This version of the rectangular splitting algorithm can be viewed as a generalization of

an algorithm used by Smith [96] for computing rising factorials (we consider the case of

rising factorials further in Section 3.6.1).

In fact, the author of this thesis first found Algorithm 3.5.3 by generalizing Smith’s

algorithm, and only later discovered Algorithm 3.5.2 by “interpolation” between Algo-

rithm 3.5.1 and Algorithm 3.5.3.

Algorithm 3.5.3 Polynomial matrix product and evaluation using rectangular splitting

(variation)

Input: M ∈ C[x][k]r×r, z ∈ H, n = m× w

Output:
∏n−1

i=0 M(z, i) ∈ Hr×r

1: Compute power table [zj , 0 ≤ j ≤ m degxM ]

2: ∆←∏m−1
i=0 M(x, k +m+ i)−∏m−1

i=0 M(x, k + i)

⊲ Binary splitting in C[x][k]r×r

3: V ← S ← ∏m−1
i=0 M(z, i) ⊲ Evaluate w.r.t. k, and w.r.t. x using power table

4: for i← 0 to w − 2 do

5: S ← S +∆(z,mi) ⊲ Evaluate w.r.t. k, and w.r.t. x using power table

6: V ← S × V

7: return V

The efficiency of Algorithm 3.5.3 is theoretically somewhat worse than that of Algo-

rithm 3.5.2. Since degxWm = O(m) and degk Wm = O(m), Wm has O(m2) terms

(likewise for ∆m), making the space complexity higher and increasing the number of

coefficient operations to O((n/m)m2) for the evaluations with respect to k. However,

this added cost may be negligible in practice. Crucially, when C = Z, the coefficients

have similar bit sizes to those in Algorithm 3.5.2.

Generating Wm or ∆m at the start of the algorithm also adds some cost, but this is

cheap compared to the evaluations when n is large enough: binary splitting over C[x][k]

costs O(M(m2) logm) coefficient operations by Lemma 8.2 and Corollary 8.28 in [107].

This is essentially the same as the total cost of binary splitting in Algorithm 3.5.2 when

m ∼ n1/2.

We also note that a small improvement to Algorithm 3.5.2 is possible if M(x, k +m) =

M(x +m,k): instead of computing U from scratch using binary splitting in each loop

iteration, we can update it using a Taylor shift. At least in sufficiently large character-

istic, the Taylor shift can be computed using O(M(m)) coefficient operations with the
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convolution algorithm of Aho, Steiglitz and Ullman [1], saving a factor O(log n) in the

total number of coefficient operations. In practice, basecase Taylor shift algorithms may

also be beneficial (see [106]).

In lucky cases, the polynomial coefficients (in either Algorithm 3.5.2 or 3.5.3) might

satisfy a recurrence relation, allowing them to be generated using O(n) coefficient oper-

ations (and avoiding the dependency on polynomial arithmetic).

3.5.2 Several parameters

The rectangular splitting technique can be generalized to sequences c(x1, . . . , xv, k) de-

pending on several parameters. In Algorithm 3.5.2, we simply replace the power table

by a v-dimensional array of the possible monomial combinations. Then we have the

following result (ignoring coefficient operations).

Theorem 3.5.5. The n-th entry in a holonomic sequence depending on v parameters

can be evaluated with rectangular splitting using O(mv+n/m) nonscalar multiplications

and O((n/m)mv) scalar multiplications. In particular, taking m = n1/(v+1), O(n1−1/v)

nonscalar multiplications and O(n2v/(1+v)) scalar multiplications suffice.

Proof. If di = degxi
M ≤ d, the entries of a product of m successive shifts of M are

C-linear combinations of x
e1,j
1 · · · xev,jh , 0 ≤ ei,j ≤ mdi ≤ md, so there is a total of O(mv)

powers.

Unfortunately, this gives rapidly diminishing returns for large v. When v > 1, the num-

ber of nonscalar multiplications according to Theorem 3.5.5 is asymptotically worse than

with fast multipoint evaluation, and reducing the number of nonscalar multiplications

requires us to perform more than O(n) scalar multiplications, as shown in Table 3.1.

Nevertheless, rectangular splitting could perhaps still be useful in some settings where

the cost of nonscalar multiplications is sufficiently large.

v m Nonscalar Scalar

1 n1/2 O(n0.5) O(n)

2 n1/3 O(n0.666...) O(n1.333...)

3 n1/4 O(n0.75) O(n1.5)

4 n1/5 O(n0.8) O(n1.6)

Table 3.1: Step size m minimizing the number of nonscalar multiplications for rectan-

gular splitting involving v parameters.
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3.5.3 Numerical evaluation

Assume that we want to evaluate c(x, n) where the underlying coefficient ring is C = Z

(or Q) and the parameter x is a real or complex number represented by a floating-point

approximation with a precision of p bits.

The naive algorithm clearly uses O(nMZ(p)) bit operations to evaluate c(x, n), or O˜(np)

with FFT multiplication.

In Algorithm 3.5.2, the nonscalar multiplications cost O((m + n/m)MZ(p)) bit opera-

tions. The coefficient operations cost O(mn) bit operations (assuming the use of fast

polynomial arithmetic), which becomes negligible if p grows faster than m.

Finally, the scalar multiplications (which are unbalanced) cost

O

(

n p
MZ(m logm)

m logm

)

bit operations. Taking m ∼ nα for 0 < α < 1, we get an asymptotic speedup with

classical or Karatsuba multiplication (see Table 3.2) provided that p grows sufficiently

rapidly along with n.

With FFT multiplication, the scalar multiplications become as expensive as the non-

scalar multiplications, and rectangular splitting therefore does not give an asymptotic

improvement.

Mult. algorithm Scalar multiplications Naive

Classical O˜(n1+αp) O˜(np2)

Karatsuba O˜(n1+0.585αp) O˜(np1.585)

FFT O˜(np) O˜(np)

Table 3.2: Bit complexity of scalar multiplications in Algorithm 3.5.2 and total bit

complexity of the naive algorithm

However, due to the overhead of FFT multiplication, rectangular splitting is still likely

to save a constant factor over the naive algorithm. In practice, one does not necessarily

get the best performance by choosing m ≈ n0.5 to minimize the number of nonscalar

multiplications alone; the best m has to be determined empirically.

Algorithm 3.4.1 is asymptotically faster than the naive algorithm as well as rectangular

splitting, with a bit complexity of O˜(n1/2p). It should be noted that this estimate

does not reflect the complexity required to obtain a given accuracy. As observed by

Köhler and Ziegler [66], fast multipoint evaluation can exhibit poor numerical stability,

suggesting that p might have to grow at least as fast as n to get accuracy proportional

to p.
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When x and all coefficients in M are positive, rectangular splitting introduces no sub-

tractions that can cause catastrophic cancellation, and the reduction of nonscalar mul-

tiplications even improves stability compared to the naive algorithm, making O(log n)

guard bits sufficient to reach p-bit accuracy. When sign changes are present, evaluat-

ing degree-m polynomials in expanded form can reduce accuracy, typically requiring

use of O˜(m) guard bits. In this case Algorithm 3.5.2 is a marked improvement over

Algorithm 3.5.1.

3.5.4 Summation of power series

A common situation is that we wish to evaluate a truncated power series

f(x) ≈ s(x, n) =

n
∑

k=0

c(k)xk, n = O(p) (3.5.3)

where c(k) is a holonomic sequence taking rational (or algebraic) values and x is a real

or complex number. In this case the Paterson-Stockmeyer algorithm is applicable, but

might not give a speedup when applied directly as in Algorithm 3.5.1 due to the growth

of the coefficients. Since d(k) = c(k)xk and s(x, n) are holonomic sequences with x as

parameter, Algorithm 3.5.2 is applicable.

Smith noted in [95] that when c(k) is hypergeometric (Smith considered the Taylor ex-

pansions of elementary functions in particular), the Paterson-Stockmeyer technique can

be combined with scalar divisions to remove accumulated factors from the coefficients.

This keeps all scalars at a size of O(log n) bits, giving a speedup over naive evaluation

when non-FFT multiplication is used (and when scalar divisions are assumed to be

roughly as cheap as scalar multiplications). This algorithm is studied in more detail by

Brent and Zimmermann [27].

At least conceptually, Algorithm 3.5.2 can be viewed as a generalization of Smith’s hy-

pergeometric summation algorithm to arbitrary holonomic sequences depending on a

parameter (both algorithms can be viewed as means to eliminate repeated content from

the associated matrix product). The speedup is not quite as good since we only reduce

the coefficients to O(n1/2 log n) bits versus Smith’s O(log n). However, even for hyper-

geometric series, Algorithm 3.5.2 can be slightly faster than Smith’s algorithm for small

n (e.g. n . 100) since divisions tend to be more expensive than scalar multiplications

in implementations.

Algorithm 3.5.2 is also more general: for example, we can use it to evaluate the gener-

alized hypergeometric function

pFq

(

a1, . . . , ap

b1, . . . , bq
z

)

=

∞
∑

k=0

ak1 · · · akp
bk1 · · · bkq

wk

k!
(3.5.4)
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where ai, bi, w (as opposed to w alone) are rational functions of the real or complex

parameter x.

An interesting question, which we do not attempt to answer here, is whether there is

a larger class of parametric sequences other than hypergeometric sequences and their

sums for which we can reduce the number of nonscalar multiplications to O(n1/2) while

working with coefficients that are strictly smaller than O(n1/2 log n) bits.

If all coefficients in (3.5.3) including the parameter x are rational or algebraic numbers

and the series converges, f(x) can be evaluated to p-bit precision using O˜(p) bit op-

erations using binary splitting. Combined with the bit-burst technique, an O˜(p) bit

complexity can also be achieved for arbitrary real or complex x.

For high-precision evaluation of elementary functions, the bit-burst algorithm typically

only becomes worthwhile at a precision of several thousand digits, while implementa-

tions typically use Smith’s algorithm for summation of hypergeometric series at lower

precision. We expect that Algorithm 3.5.2 can be used in a similar fashion for a larger

class of special functions.

When c(k) in (3.5.3) involves real or complex numbers, binary splitting no longer gives

a speedup. In this case, we can use fast multipoint evaluation to compute (3.5.3) using

O˜(p1.5) bit operations (Borwein [16] discusses the application to numerical evaluation of

hypergeometric functions). This method does not appear to be widely used in practice,

presumably owing to its high overhead and relative implementation difficulty. Although

rectangular splitting is not as fast asymptotically, its ease of implementation and low

overhead makes it an attractive alternative.

3.6 Computing the gamma function

In this section, we consider two holonomic sequences depending on a numerical parame-

ter: rising factorials, and the partial sums of a certain hypergeometric series defining the

incomplete gamma function. In both cases, our goal is to accelerate numerical evaluation

of the gamma function at very high precision.

We have implemented the algorithms in the present section using floating-point ball

arithmetic (with rigorous error bounding) as part of the Arb library. All benchmark

results were obtained on a 2.0 GHz Intel Xeon E5-2650 CPU.
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3.6.1 Rising factorials

Rising factorials of a real or complex argument appear when evaluating the gamma

function via the asymptotic Stirling series

log Γ(x) =

(

x− 1

2

)

log x− x+
log 2π

2
+

N−1
∑

k=1

B2k

2k(2k − 1)x2k−1
+RN (x).

To compute Γ(x) with p-bit accuracy, we choose a positive integer n such that there is an

N for which |RN (x + n)| < 2−p, and then evaluate Γ(x) = Γ(x+ n)/xn. It is sufficient

to choose n such that the real part of x+n is of order βp where β = (2π)−1 log 2 ≈ 0.11.

The efficiency of the Stirling series can be improved by choosing n slightly larger than the

absolute minimum in order to reduce N . For example, Re(x+n) ≈ 2βp is a good choice.

A faster rising factorial is doubly advantageous: it speeds up the argument reduction,

and making larger n cheap allows us to get away with fewer Bernoulli numbers.

Smith [96] uses the difference of four consecutive terms

(x+ k + 4)4 − (x+ k)4 = (840 + 632k + 168k2 + 16k3)

+ (632 + 336k + 48k2)x

+ (168 + 48k)x2

+ 16x3

to reduce the number of nonscalar multiplications to compute xn from n − 1 to about

n/4. This is precisely Algorithm 3.5.3 specialized to the sequence of rising factorials and

with a fixed step length m = 4.

Consider Smith’s algorithm with a variable step length m. Using the binomial theorem

and some rearrangements, the polynomials can be written down explicitly as

∆m = (x+ k +m)m − (x+ k)m =

m−1
∑

v=0

xv
m−v−1
∑

i=0

ki Cm(v, i) (3.6.1)

where

Cm(v, i) =

m−v
∑

j=i+1

mj−iS(m, v + j)

(

v + j

v

)(

j

i

)

(3.6.2)

and where S(m, v + j) denotes an unsigned Stirling number of the first kind. This

formula can be used to generate ∆m efficiently in practice without requiring bivariate

polynomial arithmetic. In fact, the coefficients can be generated even cheaper by taking

advantage of the recurrence (found by M. Kauers)

(v + 1)Cm(v + 1, i) = (i+ 1)Cm(v, i + 1). (3.6.3)
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We have implemented several algorithms for evaluating the rising factorial of a real or

complex number. For tuning parameters, we empirically determined simple formulas

that give nearly optimal performance for different combinations of n, p < 105 (typically

within 20% of the speed with the best tuning value found by a brute force search):

• In Algorithm 3.4.1, m = n0.5.

• Algorithm 3.5.1 is applied to subproducts of length ñ = min(2n0.5, 10p0.25), with

m = ñ0.5.

• In Algorithms 3.5.2 and 3.5.3, m = min(0.2p0.4, n0.5).

Our implementation of Algorithm 3.5.3 uses (3.6.2) instead of binary splitting, and

Algorithm 3.5.2 exploits the symmetry of x and k to update the matrix U using Taylor

shifts instead of repeated binary splitting.

Figure 3.6.1 compares the running times where x is a real number with a precision of

p = 4n bits. This input corresponds to that used in our Stirling series implementation

of the gamma function.

Figure 3.1: Timings of rising factorial algorithms, normalized against the naive algo-

rithm. FME: fast multipoint evaluation (Algorithm 3.4.1), RS(1): Algorithm 3.5.1,

RS(2): Algorithm 3.5.2, RS(3): Algorithm 3.5.3.

On this benchmark, Algorithms 3.5.2 and 3.5.3 are the best by far, gaining a 20-fold

speedup over the naive algorithm for large n (the speedup levels off around n = 105,

which is expected since this is the approximate point where FFT integer multiplication
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kicks in). Algorithm 3.5.3 is slightly faster than Algorithm 3.5.2 for n < 103, even

narrowly beating the naive algorithm for n as small as ≈ 102.

Algorithm 3.4.1 (fast multipoint evaluation) has the most overhead of all algorithms and

only overtakes the naive algorithm around n = 104 (at a precision of 40,000 bits). Despite

its theoretical advantage, it is slower than rectangular splitting up to n exceeding 106.

Table 3.6.1 shows absolute timings for evaluating Γ(x) where x is a small real number

in Pari/GP 2.5.4, and our implementation in Arb (we omit results for MPFR 3.1.1 and

Mathematica 9.0, which were both slower than Pari). Both implementations use the

Stirling series, caching the Bernoulli numbers to speed up multiple evaluations. The

better speed of Arb for a repeated evaluation (where the Bernoulli numbers are already

cached) is mainly due to the use of rectangular splitting to evaluate the rising factorial.

The total speedup is smaller than it would be for computing the rising factorial alone

since we still have to evaluate the Bernoulli number sum in the Stirling series. The

gamma function implementations over C have similar characteristics.

Decimals Pari/GP (first) Arb (first)

100 0.000088 0.00010

300 0.00048 0.00036

1000 0.0057 0.0025

3000 0.072 (9.2) 0.021 (0.090)

10000 1.2 (324) 0.25 (1.4)

30000 15 (8697) 2.7 (22)

100000 39 (433)

300000 431 (7131)

Table 3.3: Timings in seconds for evaluating Γ(x) where x is a small real number (timings

for the first evaluation, including Bernoulli number generation, is shown in parentheses).

3.6.2 A one-parameter hypergeometric series

The gamma function can be approximated via the (lower) incomplete gamma function

as

Γ(z) ≈ γ(z,N) = z−1N ze−N
1F1(1, 1 + z,N). (3.6.4)

Borwein [16] noted that applying fast multipoint evaluation to a suitable truncation of

the hypergeometric series in (3.6.4) allows evaluating the gamma function of a fixed real

or complex argument to p-bit precision using O˜(p1.5) bit operations, which is the best

known result for general z (if z is algebraic, binary splitting evaluation of the same series

achieves a complexity of O˜(p), as noted by Brent [22]).
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Let tk = Nk/(z(z + 1) · · · (z + k)) and sn =
∑n

k=0 tk, giving

lim
n→∞

sn = 1F1(1, 1 + z,N)/z.

For z ∈ [1, 2], choosing N ≈ p log 2 and n ≈ (e log 2)p gives an error of order 2−p (it is

easy to compute strict bounds). The partial sums satisfy the order-2 recurrence

(

sk

tk+1

)

=
M(k)

q(k)

M(k − 1)

q(k − 1)
· · ·M(0)

q(0)

(

0

1/z

)

(3.6.5)

where

M(k) =

(

1 + k + z 1 + k + z

0 N

)

, q(k) = 1 + k + z. (3.6.6)

The matrix product (3.6.5) may be computed using fast multipoint evaluation or rect-

angular splitting. We note that the denominators are identical to the top left entries of

the numerator matrices, and therefore do not need to be computed separately.

Figure 3.6.2 compares the performance of the Stirling series (with fast argument reduc-

tion using rectangular splitting) and three different implementations of the 1F1 series

(naive summation, fast multipoint evaluation, and rectangular splitting using Algo-

rithm 3.5.2 with m = 0.2n0.4) for evaluating Γ(x) where x is a real argument close to

unity.

Figure 3.2: Timings of gamma function algorithms, normalized against the Stirling series

with Bernoulli numbers cached. FME: fast multipoint evaluation (Algorithm 3.4.1),

RS(2): Algorithm 3.5.2.
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Both fast multipoint evaluation and rectangular splitting speed up the hypergeometric

series compared to naive summation. Using either algorithm, the hypergeometric series

is competitive with the Stirling series for a single evaluation at precisions above roughly

10,000 decimal digits.

Algorithm 3.4.1 performs better than on the rising factorial benchmark, and is faster

than Algorithm 3.5.2 above 105 bits. A possible explanation for this difference is that

roughly n ≈ 2p terms are added in the hypergeometric series (where p is the precision

in bits), compared to n ≈ p/4 for the rising factorial, and rectangular splitting favors

higher precision and fewer terms.

The speed of Algorithm 3.5.2 is remarkably close to that of Algorithm 3.4.1 even for p as

large as 106. Despite being asymptotically slower, the simplicity of rectangular splitting

combined with its lower memory consumption and better numerical stability (in our

implementation, Algorithm 3.5.2 only loses a few significant digits, while Algorithm 3.4.1

loses a few percent of the number of significant digits) makes it an attractive option for

extremely high-precision evaluation of the gamma function.

Once the Bernoulli numbers have been cached after the first evaluation, the Stirling

series still has a clear advantage up to precisions exceeding 106 bits. We may remark that

our implementation of the Stirling series has been optimized for multiple evaluations:

by choosing larger rising factorials and generating the Bernoulli numbers dynamically

without storing them, both the speed and memory consumption for a single evaluation

could be improved.

3.6.3 Remarks

We have shown that rectangular splitting can be profitably applied to evaluation of

a general class of linearly recurrent sequences. When used for numerical evaluation of

special functions, our benchmark results indicate that rectangular splitting can be faster

than either naive evaluation or fast multipoint evaluation over a wide precision range

(between approximately 103 and 106 bits).

Two natural questions are whether our approach can be extended to more general classes

of sequences, and whether it can be optimized further, perhaps for more specific classes

of sequences. A partial answer to the first question is that rectangular splitting can

be applied to any product of polynomial matrices
∏

iM(i),M(i) ∈ R[x], not just those

where the entries of M(i) are polynomials in i. Much of the analysis we have presented

is valid assuming only that the entries grow at most as polynomials in i, in particular

assuming that degxM(i) is bounded. Rectangular splitting is analogous to binary split-

ting in this sense, whereas the fast multipoint evaluation algorithm does not seem to

generalize in such a way.
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Chapter 4

Evaluating functions of power

series

Interesting number sequences can often be interpreted as coefficients in the series expan-

sions of analytic functions. Power series are a powerful mathematical and computational

paradigm: rather than viewing f(z), f ′(z), . . . as separate values, we treat the power se-

ries f(z) + f ′(z)x+ . . . as a single object and phrase transformations of the coefficients

as operations done on power series. This provides at least two benefits: firstly, we often

make life easier by avoiding messy explicit formulas for the individual coefficients, and

secondly, we can take advantage of fast algorithms for power series arithmetic.

4.1 Bernoulli numbers

The Bernoulli numbers are defined by the generating function

x

ex − 1
=

∞
∑

k=0

Bk
xk

k!
. (4.1.1)

Bernoulli numbers appear in various expansions of special functions. We have already

used them in the calculation of the gamma function, and will later use them when

calculating the Hurwitz zeta function.

An efficient way to generate Bernoulli numbers is to construct a truncation of the power

series
ex − 1

x
=

∞
∑

k=0

xk

(k + 1)!
(4.1.2)

and compute its multiplicative inverse using Newton iteration (see section 4.4). This

allows us to compute B0, . . . , Bn using O(M(n)) ring operations. It allows us, in par-

ticular, to generate the Bernoulli numbers as exact fractions in time O˜(n2), which is
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softly optimal since the numerators and denominators take Ω(n2) bits of space to write

down.

Moreover, if we want to compute the Bernoulli numbers modulo a prime p > n, doing

all arithmetic modulo p reduces the complexity to O˜(n log p) which again is softly

optimal. This algorithm extends to other numbers with generating functions given by

compositions of arithmetic operations and elementary functions.

Recursive algorithms with a bit complexity of O˜(n3) are often adequate in practice.

Some alternatives are discussed in [23]. An interesting algorithm, used in unpublished

work of Bloemen [10], is to compute Bn via ζ(n) by direct approximation of the sum
∑∞

k=0 k
−n, recycling the powers to process several n simultaneously. This algorithm

has suboptimal complexity O˜(n3), but the implied constant is extremely small. For

multi-evaluation of Bernoulli numbers in FLINT and Arb, Bloemen’s method turned

out to be faster than power series inversion for n as large as 105.

4.2 Defining functions of power series

As usual, R[[x]] denotes the ring of formal power series over a commutative ring R, and

R[[x]]/〈xn〉 ∼= R[x]/〈xn〉

denotes the ring of formal power series truncated to degree less than n. Given a formal

power series F =
∑∞

k=0 fkx
k, we sometimes use the notation [xk]F for the coefficient fk.

The arithmetic operations (addition, multiplication, reciprocal and division) are defined

in the usual way.

If F,G ∈ R[[x]] and [x0]G = 0, then the composition of F =
∑∞

k=0 fk and G =
∑∞

k=0 gk

is defined to be the power series H = F (G) = f0 + f1G + f2G
2 + . . .. Since [xn]H

only depends on fk, gk for k ≤ n, formal composition of power series commutes with

truncation.

Let f be an analytic function defined on some domain U ⊆ C and let

G = g0 + g1x+ g2x
2 + . . . ∈ C[[x]]

where G0 ∈ U . Then we define f(G) as the object

f(G) = f(g0) + f ′(g0)(G − g0) +
f ′′(g0)
2!

(G− g0)
2 . . . ∈ C[[x]].

If G is the Taylor series expansion of an analytic function g at some point z and g(z) ∈ U ,

then f(G) is the Taylor series expansion of f(g) at z (note, however, that f(G) is well-

defined even if G has zero radius of convergence). By standard uniqueness theorems

from complex analysis, identities involving functions also extend to identities of power
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series: if it holds for all z ∈ U that f(z) = h(z), then it holds for all G ∈ C[[x]] with

[x0]G ∈ U that f(G) = h(G).

Since G − g0 = O(x), [xn]f(G) only depends on the finitely many terms g0 . . . gn. This

means that the operation of evaluating a function of a power series commutes with

power series truncation, and therefore, identities of functions over C[[x]] are also valid

over C[[x]]/〈xn〉.

In many situations when working with numerical power series, we do need to work

with non-formal (i.e. analytic) limits, which are defined coefficientwise. We thus say

that F = limn→∞ Fn if [xk]Fn → [xk]F for all k. It is useful to have a convenient

notation for coefficientwise bounds of power series: if F =
∑

k fkx
k ∈ C[[x]], we define

|F | =∑k |fk|xk (this notation does not overload with the previously-given definition of

applying a function to a power series, since | · | is not analytic). If ∀k : |fk| ≤ |gk|, we
write |F | ≤ |G| (in this case, G is said to be a majorant series of F ). It is easy to check

that |F +G| ≤ |F |+ |G| and |FG| ≤ |F ||G| for all F , G.

If we parse a formula for a function such that all compositions are formal, then “com-

puting a function of a power series” is effectively the same thing as “computing a power

series of a function”. For example, the expression log(3+sin(x)), interpreted as a power

series, should be read as F (G) where F = log(3 + x) and G = sin(x), and not, for

example, as F (G) where F = log(1 + x) and G = 2 + sin(x). The latter composition

neither converges formally nor analytically.

4.3 Fast composition

Classical algorithms for formal composition of power series truncated to length n require

O(n3) operations on elements in the coefficient ring [64]. This bound can be improved

to O(nM(n)) by use of fast polynomial multiplication. In [25], Brent and Kung gave

two asymptotically faster algorithms for composition.

The first algorithm (BK 2.1) is a baby-step giant-step version of Horner’s rule, with the

additional improvement that the scalar multiplications are grouped into a single matrix

multiplication.

Suppose we want to compute f(g) ∈ R[[x]]/〈xn〉. Choosing a step length m ≥ n1/2, let

A be the m × m matrix populated by the coefficients in f in row-major order, let B

be the m × n matrix whose rows are the first m powers of g as vectors of coefficients,

and let ci,j denote the coefficient at row i and column j in the m × n matrix C = AB
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(indexed from zero). Then

f(g) =
m−1
∑

i=0





n−1
∑

j=0

ci,jx
j



 (gm)i.

For example, with n = 9,m = 3, C is the 3× 9 matrix obtained by multiplying

A =







[x0]f [x1]f [x2]f

[x3]f [x4]f [x5]f

[x6]f [x7]f [x8]f







with

B =







1 0 0 0 . . . 0

[x0]g [x1]g [x2]g [x3]g . . . [x8]g

[x0]g2 [x1]g2 [x2]g2 [x3]g2 . . . [x8]g2






.

BK 2.1 allows computing a length-n composition in O(n1/2(M(n) + MM(n1/2))) oper-

ations. This bound reduces to O(n1/2
M(n) + n2) with classical matrix multiplication,

and to O(n1/2
M(n) + n1.91) with the Strassen algorithm. The last term can be im-

proved to O(n1.688) with the Coppersmith-Winograd algorithm [107], or to O(n1.68632)

with the recent bound for MM(n) by Stothers and Vassilevska Williams [98, 104]. The

best available bound for the last term is O(n1.667), using the improved technique for

multiplication of nonsquare matrices of Huang and Pan [51].

The second algorithm (BK 2.2) uses formal Taylor expansion to break the composition

into smaller pieces of carefully chosen size, and requires O((n log n)1/2M(n)) operations.

This is asymptotically slower than BK 2.1 when classical multiplication (M(n) = O(n2))

or Karatsuba multiplication (M(n) = O(nlog
2
3) = O(n1.585)) is used, but faster when

FFT polynomial multiplication (M(n) = O(n log1+o(1) n)) is available [9, 107].

4.4 Elementary functions

As noted by Brent and Kung, many special left-compositions, including the evaluation

of reciprocals, square roots, and elementary transcendental functions of power series,

can be done in merely O(M(n)) operations.

The main tool is Newton’s method for root-finding. Suppose F ∈ R[[x]] with [x0]F = 0

and [x1]F 6= 0, and suppose hk ∈ R[[x]] satisfies F (hk) ≡ 0 mod xn. Then

hk+1 = hk −
F (hk)

F ′(hi)
≡ 0 mod x2n.

By truncating each iterate hk at the number of correct terms, Newton’s iteration allows

computing a root of F to order O(xn) using O(n) +C(n) +C(n/2) +C(n/4) + . . . ring

operations, where C(n) is the cost of the composition F (hk)/F
′(hi) to order O(xn).
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Computing an inverse function h = f−1(g) is equivalent to finding a root of F (h) =

f(h) − g. If left-composition of f has complexity at least M(n), then the cost of left-

composition by f−1 is the same up to a constant factor. In particular, composition

by algebraic functions has complexity O(M(n)). (In the special case of computing a

reciprocal 1/f , needed in general for the division in F (hk)/F
′(hi), the Newton iteration

reduces to hk+1 = 2hk − fh2k which only depends on multiplication.)

The logarithm and inverse trigonometric functions of power series can be computed in

O(M(n)) operations as formal integrals of algebraic functions, i.e.

log(f(x)) =

∫

f ′(x)
f(x)

dx

atan(f(x)) =

∫

f ′(x)
1 + f(x)2

dx

asin(f(x)) =

∫

f ′(x)

(1− f(x)2)1/2
dx

acos(f(x)) = −
∫

f ′(x)

(1− f(x)2)1/2
dx,

In each case, the corresponding scalar function of [x0]f should be added as the constant

of integration. Finally, the exponential function and trigonometric functions can be

computed in O(M(n)) operations from their inverse functions using Newton iteration.

Recent research has focused on speeding special compositions by constant factors by

eliminating redundancy from Newton iteration [8, 45, 48]. Algorithms with quasilinear

complexity are also known for certain right-compositions, including right-composition

by algebraic functions [101] and some special functions [20]. Improved composition

algorithms over special rings have also been investigated [6, 59, 93]. However, the

algorithms of Brent and Kung have remained the best known in the general case.

4.5 Fast reversion without Newton iteration

Reversion of power series is the problem of finding the compositional inverse series of

a given power series. Just as composition of formal power series (locally) represents

composition of functions, reversion of power series represents inversion of functions.

For example, if

f(x) = exp(x)− 1 = x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

and

g(x) = log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . ,

then f and g are reversions of each other as formal power series, and analytic inverse

functions of each other in a neighborhood of x = 0.
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We now consider computing the reversion of a general power series f , i.e. not having

special form. Any algorithm for composition can be used for reversion (and vice versa)

via Newton iteration, with at most a constant factor slowdown, as observed by Brent

and Kung. In particular, combining Newton iteration with algorithms BK 2.1 or BK 2.2

from [25] gives two algorithms for reversion with respective complexity O(n1/2(M(n) +

MM(n1/2))) and O((n log n)1/2M(n)).

Here we give an algorithm for reversion analogous to BK 2.1 and likewise requiring

O(n1/2(M(n) + MM(n1/2))) operations, but achieving a constant factor speedup. The

speedup ratio depends on the asymptotics of M(n) and MM(n) and is in the range be-

tween 1.2 and 2.6 for polynomial and matrix multiplication algorithms used in practice.

Our algorithm also allows incorporating the complexity refinement of Huang and Pan.

Whereas BK 2.1 can be viewed as a baby-step giant-step version of Horner’s rule, our

algorithm can be viewed as a baby-step giant-step version of the Lagrange inversion

formula, avoiding Newton iteration entirely (apart from a single O(M(n)) reciprocal

computation). It is somewhat surprising that such an algorithm has been overlooked

until now, with all publications following Brent and Kung apparently having taken

Newton iteration as the final word on the subject matter.

4.5.1 The algorithm

Our setting is the ring of truncated power series R[[x]]/〈xn〉 over a commutative coeffi-

cient ring R in which the integers 1, . . . , n− 1 are cancellable (i.e. nonzero and not zero

divisors). For example, we may take R = Z or R = Z/pZ with prime p ≥ n. We recall

the Lagrange inversion formula ([64], p. 527). If f(x) = x/h(x) where h(0) is a unit in R,

then the compositional inverse or reversion f−1(x) satisfying f(f−1(x)) = f−1(f(x)) = x

exists and its coefficients are given by

[xk]f−1(x) =
1

k
[xk−1]h(x)k.

The straightforward way to evaluate n terms of f−1(x) with the Lagrange inversion

formula is to compute h(x) (this requires O(M(n)) operations with Newton iteration)

and then compute the powers h2, h3, . . . successively, for a total of (n + O(1))M(n)

operations.

Our observation is that it is redundant to compute all the powers of h given that we only

are interested in a single coefficient from each. To do better, we choose some 1 ≤ m < n

and precompute h, h2, h3, . . . , hm. For 0 ≤ k < n, we can then write hk as hi+j where

0 ≤ j < m and i = lm for some 0 ≤ l ≤ ⌈n/m⌉, only requiring hm, h2m, h3m, . . . to

be computed subsequently. Determining a single coefficient in hk = hihj can then be

done in O(n) operations using the definition of the Cauchy product. Picking m ≈ n1/2
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minimizes the number of polynomial multiplications required.

We give a detailed account of this procedure as Algorithm 4.5.1. We note that most of

the polynomial arithmetic is done to length n − 1 rather than length n, as the initial

coefficient always is zero.

Algorithm 4.5.1 Fast Lagrange inversion

Input: f = a1x+ a2x
2 + . . .+ an−1x

n−1 where n > 1 and a1 is a unit in R

Output: g = b1x+ . . .+ bn−1x
n−1 such that f(g(x)) = g(f(x)) = x mod xn

1: m← ⌈
√
n− 1⌉

2: h← x/f mod xn−1

3: for 1 ≤ i < m do

4: hi+1 ← hi × h mod xn−1

5: bi ← 1
i [x

i−1]hi

6: t← hm

7: for i = m, 2m, 3m, . . . , lm < n do

8: bi ← 1
i [x

i−1]t

9: for 1 ≤ j < m while i+ j < n do

10: bi+j ← 1
i+j

∑i+j−1
k=0 ([xk]t) · ([xi+j−k−1]hj)

11: t← t× hm mod xn−1

return b1 + b2x+ . . .+ bn−1x
n−1

An improved version

Algorithm 4.5.1 clearly requires O(n1/2
M(n) + n2) operations in R, as many as BK 2.1

with classical matrix multiplication. We can improve the complexity by packing the

inner loops into a single matrix product as shown in Algorithm 4.5.2. This allows us to

exploit fast matrix multiplication.

In the description of Algorithm 4.5.2, the matrices are indexed from 1 and the pseu-

docode has been simplified by letting the exponents run out of bounds, using the con-

vention that [xk]p = 0 when k < 0 or k ≥ n − 1. To see that the algorithm is correct,

write [xi1+(i2−1)m−1]hi1+(i2−1)m as

i1+(i2−1)m−1
∑

j=0

([

xj
]

hi1
)

([

xi1+(i2−1)m−1−j
]

h(i2−1)m
)

and shift the summation index to obtain
i2m
∑

j=m−i1+1

([

xi1+j−m−1
]

hi1
)

(

[

xi2m−j
]

h(i2−1)m
)

which is the inner product of the nonzero part of row i1 in B with the nonzero part of

row i2 in A.
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Algorithm 4.5.2 Fast Lagrange inversion, matrix version

Input: f = a1x+ a2x
2 + . . .+ an−1x

n−1 where n > 1 and a1 is a unit in R

Output: g = b1x+ . . .+ bn−1x
n−1 such that f(g(x)) = g(f(x)) = x mod xn

1: m← ⌈
√
n− 1⌉

2: h← x/f mod xn−1

3: Assemble m×m2 matrices B and A from h, h2, . . . , hm and hm, h2m, h3m, . . ..

4: for 1 ≤ i ≤ m, 1 ≤ j ≤ m2 do

5: Bi,j ← [xi+j−m−1] hi

6: Ai,j ← [xim−j ] h(i−1)m

7: C ← ABT

8: for 1 ≤ i < n do

9: bi ← Ci/i (Ci is the ith entry of C read rowwise)
return b1 + b2x+ . . .+ bn−1x

n−1

The structure of the matrices is perhaps illustrated more clearly by an example. Taking

n = 8 and m = 3, we need the coefficients of 1, x, . . . , x6 in powers of h. Letting hki
denote [xi]hk, the matrices become

A =







h02 h01 h00 0 0 0 0 0 0

h35 h34 h33 h32 h31 h30 0 0 0

(h68) (h67) h66 h65 h64 h63 h62 h61 h60







B =







0 0 h10 h11 h12 h13 h14 h15 h16

0 h20 h21 h22 h23 h24 h25 h26 (h27)

h30 h31 h32 h33 h34 h35 h36 (h37) (h38)







where entries in parentheses do not contribute to the final result and may be set to

zero. In this example the coefficient of x4 in h5 is given by the fifth entry in C, namely

C2,2 = h34h
2
0 + h33h

2
1 + h32h

2
2 + h31h

2
3 + h30h

2
4.

4.5.2 Complexity analysis

We now study the complexity in some more detail. Let m = ⌈
√
n− 1⌉. Then Algorithm

4.5.2 involves at most:

1. 2m+O(1) polynomial multiplications, each with cost M(n)

2. One (m×m2) times (m2 ×m) matrix multiplication

3. O(n) additional operations

For comparison, BK 2.1 requires at most:
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1. m polynomial multiplications, each with cost M(n)

2. One (m×m) times (m×m2) matrix multiplication

3. m polynomial multiplications and additions, each with cost M(n) + n

Brent and Kung break the matrix multiplication into m products of m ×m matrices,

requiring mMM(m) operations. We can do the same in Algorithm 4.5.2, writing the

product as a length-m inner product of m×m matrices. The extra O(n3/2) additions in

this matrix operation do not affect the complexity, but it is interesting to note that they

match the O(n3/2) additions in the last polynomial stage of BK 2.1. To summarize, both

Algorithm 4.5.2 and BK 2.1 require at most (2n1/2+O(1))M(n)+n1/2
MM(n1/2)+O(n3/2)

operations.

The primary drawback of our algorithm as well as BK 2.1 is the requirement to store

O(n3/2) temporary coefficients in memory, compared to O(n log n) for BK 2.2 and O(n)

for a naive implementation of Lagrange inversion.

Avoiding Newton iteration

In effect, we need the same number of operations to perform a length-n reversion with

fast Lagrange inversion as to perform a length-n composition with BK 2.1. However, to

perform a reversion with BK 2.1, we must employ Newton iteration. Using the update

gk+1(x) =
f(gk(x))− x

f ′(gk(x))
,

where the chain rule allows us to reuse the composition in the numerator for the de-

nominator, this entails computing a sequence of compositions of length

l = 1, . . . , ⌈n/4⌉, ⌈n/2⌉, n,

plus a fixed number of polynomial multiplications of the same length at each stage. If

c and r are such that a length-n composition takes C(n) = cnr operations, Newton

iteration asymptotically takes

C(n) +C(n/2) + C(n/4) + . . . = cnr

(

2r

2r − 1

)

operations, ignoring additional polynomial multiplications. For example, with classical

polynomial multiplication as the dominant cost (r = 5/2), the speedup given by the

expression in parentheses is 4
31 (8+

√
2) ≈ 1.214 . With FFT polynomial multiplication,

and classical matrix multiplication as the dominant cost (r = 2), the speedup is 4/3.

We note that a more efficient form of the Newton iteration might exist, in which case

the speedup would be smaller.
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Figure 4.1: Square block decomposition of the matrix A.

Figure 4.2: Square block decomposition of the matrix AP .

Improving the matrix multiplication

If the matrix multiplication dominates, we can gain an additional speedup from the fact

that the ith m × m block of the matrix A only has m − i + 1 nonzero rows, whereas

the matrices in BK 2.1 are full. Classically this gives a twofold speedup, reflected in

the loop boundaries of Algorithm 4.5.1. We should ideally modify Algorithm 4.5.2 to

include this saving.

In fact, a speedup is attainable with any square matrix multiplication algorithm having

complexity MM(m) ∼ mω where ω > 2. For simplicity, assume that m is sufficiently

composite. Do the first m/2 products as full products of size m, the next (m/2−m/3) in

blocks of sizem/2, the next (m/3−m/4) in blocks of sizem/3, and so on (see Figure 4.1).

At stage k, only k2 products of blocks of size m/k are required. The speedup achieved

through this procedure is

mω+1

( ∞
∑

k=1

(

m

k
− m

k + 1

)

k2
(m

k

)ω
)−1

>

( ∞
∑

k=0

2k−1

2kω

)−1

= 2− 22−ω > 1

where the nontrivial inequality can be obtained by considering the analogous subdivison

with blocks of size m/2k only.

Alternatively, we can write ABT = (AP )(P−1BT ) where P is a permutation matrix that

makes each m ×m block in A lower triangular, and use any algorithm that speeds up

multiplication between a full and a triangular matrix. A simple recursive decomposition

of size-k blocks into size-k/2 blocks (see Figure 4.2) has a proportional cost of C(k) =

4C(k/2)+2(k/2)ω+O(k2), providing a speedup of 2ω−1−2. This is greater than 1 when
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ω > log2 6 ≈ 2.585, and better than the first method when ω > 1+log2(2+
√
2) ≈ 2.771.

In particular, we recover an optimal factor-two speedup with classical multiplication, and

a 3/2 speedup with the Strassen algorithm.

The asymptotic speedup ratios with both methods are illustrated in Figure 4.3.

Figure 4.3: Speedup of the block decomposition algorithms for structured matrix mul-

tiplication.

Using rectangular multiplication

The complexity improvement of Huang and Pan for multiplication of rectangular ma-

trices [51] also translates to Algorithm 4.5.2. More precisely, given any algorithm for

m×m by m×n matrix multiplication over a general ring, there is a transposed version

for m×n by n×m matrix multiplication that uses the same number of scalar multipli-

cations [50] and a number of extra scalar additions bounded by the number of entries

[90]. We can therefore take MM(m,n,m) = (1 + o(1))MM(m,m,n).

With the Huang-Pan algorithm, we do not know whether a constant factor can be saved

by exploiting the zero entries. This problem would be interesting to explore further.

In any case, the Huang-Pan algorithm is currently only of theoretical interest, as the

advantage probably only can be realized for infeasibly large matrices.

Practical performance

Table 4.1 gives a summary of the theoretical speedup gained by Algorithm 4.5.2 over

BK 2.1 with various matrix and polynomial multiplication algorithms. With FFT-based

polynomial multiplication, BK 2.2 is asymptotically faster than BK 2.1 and hence also
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Dominant operation Complexity Newton Matrix Total

Polynomial, classical O(n5/2) 1.214 1 1.214

Polynomial, Karatsuba O(n1/2+log
2
3) 1.308 1 1.308

Matrix, classical O(n2) 1.333 2.000 2.666

Matrix, classical, n-bit coeff. O(n3+o(1)) 1.142 2.000 2.285

Matrix, Strassen O(n(1+log
2
7)/2) 1.364 1.500 2.047

Matrix, Cop.-Win. O(n1.688) 1.450 1.229 1.782

Matrix, Huang-Pan O(n1.667) 1.458 1? 1.458?

(Polynomial, FFT)* O(n3/2+o(1)) 1.546 1 1.546

(Polynomial, FFT, n-bit coeff.)* O(n5/2+o(1)) 1.214 1 1.214

Table 4.1: Theoretical speedup of Algorithm 2 over BK 2.1 due to avoiding Newton

iteration and exploiting the matrix structure. *Assuming that matrix multiplication

can be ignored.

than Algorithm 4.5.2. In practice, however, the overhead of quasilinear polynomial

multiplication compared to matrix multiplication is likely to be large. Fast Lagrange

inversion can therefore be expected to be faster than not only BK 2.1 but also BK 2.2

even for quite large n.

Of course, counting ring operations may not accurately reflect actual speed since oper-

ations in most interesting rings take a variable amount of time to execute on a physical

computer. One consequence of this fact is that Newton iteration is likely to impose a

smaller overhead than predicted, since coefficients generally are smaller in earlier steps

than in later ones. Newton iteration can also be expected to perform better than gener-

ically when the output as a whole has small coefficients.

Over Z in particular, arithmetic operations with b-bit numbers cost O(b1+o(1)) bit op-

erations. In power series arising in applications, we often have b = O(n1±ε). Two

complexity estimates based on this assumption are included in Table 4.1. In practice,

the speed will be sensitive to the sizes of the coefficients appearing internally in each

algorithm, varying with the structure of f(x).

We note that fast Lagrange inversion becomes faster than generically when the coeffi-

cients of x/f(x) grow slowly. This is often the case when f(x) is a rational function. The

reversion of a rational function of fixed degree can be computed faster by a dedicated

algorithm (Newton iteration takes O(M(n)) operations, using polynomial evaluation and

series division for the composition), but it is desirable for a general-purpose algorithm

to be efficient in this common case, and Lagrange inversion of course also works for

nonrational functions having this growth property.

42



4.5.3 Benchmarks

We have implemented tuned versions of naive Lagrange inversion (“Lagrange”), BK 2.1

with Newton iteration, and Algorithm 4.5.1 (“Fast Lagrange”) over Z/pZ, Z and Q

as part of the FLINT library. For each of these rings, FLINT provides fast coefficient

and polynomial arithmetic. Matrix multiplication over Z/pZ uses the Strassen algorithm

when the smallest dimension is at least 256, which in principle helps BK 2.1 for n > 2562

(the speedup is not significant for feasible n, however).

Timings over Z/pZ obtained on an Intel Xeon E5-2650 2.0 GHz CPU with 256 GiB of

RAM are given in Table 4.2. Algorithm 4.5.1 consistently runs about 1.6 times faster

than BK 2.1, agreeing with a predicted speedup of 1.546 with quasilinear polynomial

multiplication and negligible cost of matrix multiplication – we see that polynomial

multiplication indeed dominates in BK 2.1 for n up to at least 106. We have also

implemented BK 2.2 over Z/pZ, finding it to take about twice as much time as BK 2.1

in the tested range. BK 2.2 might however be preferable for larger n due to memory

limits (with n = 106 and 64-bit coefficients, BK 2.1 uses 15 GiB of memory and fast

Lagrange reversion uses 7.5 GiB of memory).

Ring operations in Z and Q do not take constant time, as reflected in Tables 4.3 and 4.4.

Timings are roughly cubic in n as expected from theory, but sensitive to the inputs. Fast

Lagrange inversion is the fastest algorithm for small n in all examples, the fastest in all

examples over Z, and substantially faster for the rational functions f3 and f6 (in both

cases x/f(x) has small coefficients). For large n, BK 2.1 performs well on f4 and f5,

presumably due to generating smaller coefficients internally.

n Lagrange BK 2.1 BK 2.2 Fast Lagrange

10 10 µs 10 18 6.1

102 2.8 ms 0.92 1.6 0.54

103 690 ms 66 120 45

104 110 s 3.3 (8%) 7.1 2.1

105 12100 s 144 (20%) 315 85

106 1.9 · 106 s 8251 (28%) 15131 4832

Table 4.2: Time for reversion of a random power series over Z/pZ, p = 263 + 29. The

time spent on matrix multiplication in BK 2.1 is shown in parentheses.

With larger coefficients (as seen especially in the case of f1), matrix multiplication

appears to take a larger proportion of the time, suggesting that BK 2.2 becomes com-

petitive for smaller n. We have not implemented BK 2.2 over Z and Q, however, and

can therefore not provide a direct comparison.
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n Lagrange BK 2.1 Fast Lagrange

f1 f2 f3 f1 f2 f3 f1 f2 f3

10 7.0 µs 6.5 6.3 10 10 10 4.9 4.3 4.1

102 31 ms 7.2 3.2 7.8 2.1 2.1 6.4 0.96 0.65

103 106 s 10 4.5 10 1.1 0.96 7.1 0.71 0.22

(38%) (31%) (11%)

104 - - - 24356 s 1453 538 8903 426 152

(81%) (67%) (10%)

Table 4.3: Time for the reversion of f1(x) =
∑

k≥1 k!x
k, f2(x) =

x√
1−4x

, f3(x) =
x+x2

1+x+x2

over Z.

n Lagrange BK 2.1 Fast Lagrange

f4 f5 f6 f4 f5 f6 f4 f5 f6

10 15 µs 15 13 31 28 28 11 11 9.1

102 40 ms 40 10 12 21 8.8 8.9 8.1 1.9

103 145 s 133 9.7 8.8 17 3.1 14 13 0.65

(28%) (24%) (19%)

104 - - - 13812 s 27057 1990 35633 27823 784

(27%) (27%) (14%)

Table 4.4: Time for the reversion of f4(x) = exp(x)− 1, f5(x) = x exp(x),

f6(x) =
3x(1−x2)

2(1−x+x2)2
over Q.

Care must be taken to handle denominators efficiently. In our implementation of BK 2.1,

we found that naive matrix multiplication over Q took ten times as long as polynomial

multiplications. Clearing denominators and multiplying matrices over Z resulted in

a comparable time being spent on the matrix and polynomial stages. Similar concerns

apply when implementing Algorithms 4.5.1 and 4.5.2. On the other hand, translating the

entire composition or reversion to one over Z by rescaling the inputs typically results in

too much coefficient inflation, and can even run slower than a classical algorithm working

directly over Q. We expect the situation to be similar when working with parametric

power series having rational functions as coefficients.

An interesting alternative would be to work modulo small primes and reconstruct the

output using the Chinese remainder theorem. We have not investigated this option in

detail. It would provide additional memory benefits: for example, if the coefficients have

O(n) bits, direct application of BK 2.1 or fast Lagrange reversion uses O(n5/2) bits of

temporary space, while modular reversions each require O(n3/2+o(1)) bits of space – less

than the O(n2) bits required to store the output.
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4.5.4 Reversion with numerical coefficients

We have implemented the previously-mentioned algorithms for reversion of power se-

ries with real or complex coefficients (represented by balls) in the Arb library. Some

experimentation suggests that fast Lagrange inversion generally performs about as well

as BK 2.1 both in terms of speed and numerical accuracy, as the example in Table 4.5

and Table 4.6 illustrates.

n b Lagrange BK 2.1 Fast Lagrange

10 100 0.0002 0.00017 0.00007

100 100 0.025 0.0093 0.0059

100 1000 0.10 0.030 0.018

1000 100 9.8 0.82 0.65

1000 1000 19 1.8 1.2

1000 10000 193 30 16

10000 100 - 110 130

10000 1000 - 226 200

10000 10000 - 2690 1349

Table 4.5: Time (in seconds) for the reversion of exp(x)−1 to order O(xn) over R, using

ball arithmetic with a precision of b bits.

Lagrange BK 2.1 Fast Lagrange

Error Bound Error Bound Error Bound

2−100 2−59 2−99 2−55 2−99 2−77

2−96 2+564 2−96 2+137 2−96 2−9

2−996 2−336 2−996 2−833 2−996 2−909

2−91 2+9325 2−96 2+3929 2−91 2+227

2−991 2+8425 2−994 2−642 2−991 2−673

2−9991 2−575 2−9994 2−9642 2−9991 2−9673

- - 2−92 2+72552 2−22 2+1167

- - 2−990 2−337 2−921 2+209

- - 2−9990 2−9337 2−9921 2−8791

Table 4.6: For each corresponding entry in Table 4.5, this table shows the actual error

of the floating-point approximation computed for the last coefficient in the output, as

well as the error bound computed using ball arithmetic.

On this test problem, we observe that all algorithms are numerically stable in floating-

point arithmetic, giving midpoints that are accurate to high precision. The error bounds
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produced with our implementation of ball arithmetic are far from tight, however. The

poor error bounds are explained by the fact that a large number of successive poly-

nomial multiplications are being performed, together with the characteristics of our

multiplication algorithm. We compute a slight overestimate for the error bound in each

multiplication, and the successive multiplications cause these overestimates to accumu-

late.

Since both BK 2.1 and fast Lagrange inversion reduce the number of successive multi-

plications from O(n) to O(n1/2), they are better than naive Lagrange inversion in terms

of both execution speed and the tightness of the error bounds (for composition of power

series, BK 2.1 represents a similar improvement over Horner’s rule).

In either BK 2.1 or fast Lagrange inversion, the error bounds could potentially be

improved by computing powers from scratch using binary exponentiation rather than

recurrently. This would reduce the maximum number of sequential multiplications to

O(log n), at the cost of increasing the total number of polynomial multiplications by a

factor O(log n).

4.5.5 Remarks

Fast Lagrange inversion is a practical algorithm for reversion of formal power series,

having essentially no higher overhead than a naive implementation of Lagrange inversion

for small n and requiring fewer coefficient operations than Newton iteration coupled

with BK 2.1 for large n. Among currently available general-purpose algorithms, it

is likely to be the fastest choice for typical coefficient rings, input series, and values

of n, and may thus be a good choice as a default reversion algorithm in a computer

algebra system. Newton iteration with BK 2.2 remains faster asymptotically when FFT

polynomial multiplication is available, and uses less memory, but may require very large

n to become advantageous.

An interesting question is whether a reversion analog of BK 2.2 can be constructed

that avoids Newton iteration, or whether we can otherwise save constant factors in

BK 2.2. We may also ask whether the close correspondence in complexity between

Algorithm 4.5.2 and BK 2.1 can be explained by some underlying duality along the lines

of the transposition principle. Further investigation of improvements over particular

rings and of the special matrix multiplications arising in Algorithm 4.5.2 and BK 2.1

would also be warranted.
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4.6 The gamma function

The gamma function Γ(z) appears in many contexts, for example in normalization fac-

tors of hypergeometric functions and in the functional equation of the Riemann zeta

function (and more general L-functions). Thus the ability to compute series expansions

of the gamma function is often useful.

Recall that to evaluate the gamma function with an accuracy of P bits, we need a rising

factorial of r ∼ P factors, and N ∼ P terms of the Stirling series

log Γ(z) =

(

z − 1

2

)

log z − z +
ln 2π

2
+

N−1
∑

k=1

B2k

2k(2k − 1)z2k−1
+RN (z). (4.6.1)

Assume now that we want to compute D coefficients in the Taylor series of the gamma

function at a fixed complex number z. This can be done by substituting z → z + x ∈
C[[x]]/〈xD〉 and evaluating all expressions in (4.6.1) using power series arithmetic. Note

that we can evaluate Γ(Z) for any formal power series Z = z + z1x+ z2x
2 + . . . by first

evaluating Γ(z+ x) and then formally right-composing by Z − z using, for instance, the

Brent-Kung algorithm (unlike the elementary functions, we are not aware of a better

way to evaluate the gamma function of a whole power series at once).

The remainder in the Stirling series is given exactly (Olver [84], pp. 293–295) by

RN (z) =

∫ ∞

0

B2N − B̃2N (t)

2N(z + t)2N
dt.

where B̃n(t) = Bn(t−⌊t⌋) denotes the n-th periodic Bernoulli polynomial. Since RN (z)

is an analytic function of z ∈ C \ (−∞,+ǫ), we can expand it in a power series and

bound the coefficients to get error bounds for derivatives of all orders. By extending

Olver’s calculation, we obtain the coefficientwise inequality

|RN (z + x)| ≤
∞
∑

k=0

bkx
k ∈ R[[x]]

where

bk = 2|B2N |
Γ(2N + k − 1)

Γ(k + 1)Γ(2N + 1)
|z| (A(z)/|z|)2N+k

and A(z) = 1/ cos(arg(z)/2).

If we use recurrence relations to generate and add the terms in the Stirling series and in

the rising factorial one by one, computing D derivatives to a precision of P bits takes

O˜(P 2D) time. When D is small (say D ≤ 4) the rising factorial can be accelerated

using the rectangular splitting algorithm of section 3.5 (applied to a power series).

Now assume that D ∼ P . In this case, we can improve the complexity of computing

Γ(z + x) to O˜(PD), which is softly optimal. This follows by applying binary splitting

to both the rising factorial and the tail sum in the Stirling series.
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For the rising factorial (z+x)(z+x+1) · · · (z+x+r−1), the binary splitting algorithm

simply amounts to recursively dividing the product in half. Although the bit sizes of

the coefficients are the same (O˜(P ) bits) throughout, binary splitting balances the

polynomial degrees, which is sufficient to achieve the complexity reduction.

The binary splitting scheme for the tail sum can be derived by writing down a matrix

recurrence for the sequence of partial sums. We observe that the recurrence is linear but

not holonomic due to the presence of Bernoulli numbers. As with the rising factorial,

the complexity reduction comes from the fact that the Bernoulli numbers have bounded

size, where the relevant measure of size is the polynomial degree.

Algorithm 4.6.1 Tail of the Stirling series using binary splitting

Input: z ∈ C and N ∈ Z≥2,D ∈ Z≥1

Output:

N−1
∑

k=1

B2k

2k(2k − 1)(z + x)2k−1
∈ C[[x]]/〈xD〉

1: Let x denote the generator of C[[x]]/〈xD〉
2: function BinSplit(j, k)

3: if j + 1 = k then

4: if j = 1 then

5: return (B2j/(2j(2j − 1)), z + x)

6: else

7: return (B2j/(2j(2j − 1)), (z + x)2)

8: else

9: (T1, Q1)← BinSplit(j, ⌊(j + k)/2⌋)
10: (T2, Q2)← BinSplit(⌊(j + k)/2⌋, k)
11: return (T1Q2 + T2, Q1Q2) ⊲ Polynomial multiplications mod xD

12: (T, Q)← BinSplit(1, N)

13: return T/Q ⊲ Power series division mod xD

In some more detail, let the terms be tk = ck/(u1u2 . . . uk) where ck = B2k/(2k(2k− 1))

and u1 = z + x and uk = (z + x)2 for k ≥ 2. Then tk = tk−1/uk, and the partial sums

sk satisfy sk = sk−1 + (ck/uk)tk. In matrix form, this becomes
(

sk

tk

)

=
1

uk

(

uk ck

0 1

)(

sk−1

tk−1

)

.

Denoting the top left entry in the matrix (and the denominator) by Q and the top right

entry by T , we obtain algorithm 4.6.1.

Timings of our implementation within the Arb library are shown in Table 4.7. We

observe that the complexity really is quasioptimal in practice, as increasing D by a

factor 10 roughly increases the running time by a factor 100. The series expansion of

the gamma function in Mathematica, included for scale, seems to be poorly implemented.
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D Mathematica 9.0 Arb

10 0.568 0.00187

30 60.9 0.00346

100 (crashes) 0.023

300 0.178

1000 2.944

3000 37.9

10000 535

Table 4.7: Time in seconds to compute the Taylor series to order O(xD) of Γ(z + x) at

z =
√
2 +
√
3i, with a precision of D digits. Computations were done on a 64-bit Intel

Xeon X5675 3.07 GHz CPU.

4.7 Integer zeta values

Integer arguments of the gamma function are particularly common. Since

log Γ(1 + x) = −γx+
∞
∑

n=2

(−1)nζ(n)
n

xn,

computing the Taylor series expansion of the gamma function at an integer is equivalent

modulo a power series exponential or logarithm to multi-evaluation of the Riemann zeta

function ζ(s) at positive integer values of s (Euler’s constant γ = lims→1 ζ(s)−1/(s−1)

can also be computed softly optimally to high precision using binary splitting, by the

Brent-McMillan algorithm [26, 24]).

It is sufficient to consider s . p where p is the numerical precision in bits, as ζ(s) can be

computed easily from the defining series ζ(s) =
∑∞

k=1 k
−s or the corresponding Euler

product when s is about as large as p. Moreover, we mainly need to worry about odd s,

as the even zeta values when s≪ p can be computed quickly from Bernoulli numbers.

Borwein, Bradley and Crandall [15] propose several methods for multi-evaluation of

ζ(s) or Bernoulli numbers, including “hyperbolic series” of Ramanujan and Zagier, and

methods based on power series. One method uses the identity

∞
∑

k=0

ζ(2k + 3)xk =
∞
∑

k=1

1

k3(1− x/k2)
(4.7.1)

=

∞
∑

k=1

(−1)k+1

k3
(

2k
k

)

(

1

2
+

2

1− x/k2

) k−1
∏

j=1

(

1− x

j2

)

(4.7.2)

Each term of the last sum adds roughly two bits of accuracy, for every derivative (it is

easy to derive an explicit error bound). Borwein, Bradley and Crandall suggest matching

coefficients in (4.7.2) to obtain fast schemes for evaluating single values of ζ(s), but we
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can also apply polynomial binary splitting directly. If we write (4.7.2) as
∑∞

k=1 T (k),

the terms are hypergeometric, satisfying T (k + 1) = P (k)T (k)/Q(k) with

P (k) = k(k2 − x)2(x− 5(k + 1)2)

Q(k) = 2(k + 1)2(2k + 1)((k + 1)2 − x)(5k2 − x)

T (1) =
x− 5

4(x− 1)
.

Adding the terms using binary splitting, we get an algorithm that is softly optimal both

when we want a large number of zeta values to high precision and (unlike the Stirling

series) when we just want a few zeta values to high precision.

A second method is a generalization of the binary splitting algorithm to evaluate Γ(z)

quickly when z is a rational number, which we already mentioned in 3.6.2. With power

series notation, we have

Γ(z + x) =

∫ ∞

0
e−ttz+x−1dt ≈

∫ ∞

N
e−ttz+x−1dt ≈ N z+xH (4.7.3)

where

H =
R
∑

k=0

(−1)kNk

(k + z + x)k!
. (4.7.4)

This generalization is due to Karatsuba [57, 58], who used it to prove that the Hurwitz

zeta function ζ(s, z) can be computed asymptotically fast for fixed positive integers s

and algebraic z. Karatsuba also proves explicit error bounds: for a precision of p bits, it

is sufficient to choose N ≈ p log 2 and R ≈ 4N (this can be improved to R ≈ cN where

c = 1/W (1/e) ≈ 3.59 and W (x) is the Lambert W -function).

We can apply polynomial arithmetic directly to the sum H. Alternatively, we can

expand (4.7.4) as a geometric series with respect to x to obtain D scalar sums to be

evaluated separately using binary splitting:

H =

D−1
∑

j=0

xj
R
∑

k=0

(−1)k+jNk

(k + z)j+1k!
. (4.7.5)

Either way, we obtain H which we finally multiply by the power series

N z+x =

D−1
∑

k=0

N z(logN)kxk

to obtain the Taylor series for the gamma function.

The scheme using polynomial binary splitting is equivalent to Algorithm 5 given by Bor-

wein, Bradley and Crandall, while the scheme using scalar binary splitting is equivalent

to the algorithm described by Karatsuba. Borwein, Bradley and Crandall ask whether

“[Karatsuba’s] methods may be used to accelerate even further the series computations
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of Algorithm 5”, apparently overlooking the correspondence between (4.7.4) and (4.7.5).

In fact, the version given by Borwein, Bradley and Crandall is faster for large D since

it balances both the polynomial degrees and the bit sizes of the terms, while the factors

(k+z)j+1 in Karatsuba’s algorithm become progressively more expensive as j increases.

Karatsuba also expresses the final multiplication by N z+x as an explicit convolution

sum, which is less efficient to evaluate verbatim.

We finally also mention Borwein’s remarkably simple and efficient formula [17]

(1− 21−s)ζ(s) =
1

dn

n−1
∑

k=0

(−1)k(dn − dk)

(k + 1)s
+ εn(s) (4.7.6)

where

dk = n
k
∑

i=0

(n + i− 1)!4i

(n− i)!(2i)!
(4.7.7)

and where |εn(s)| ≤ 3/(3 +
√
8)n for real s ≥ 2. This method can also be used for

complex s, but the error bound deteriorates with larger imaginary parts. When s is a

fixed positive integer, the partial sums are a holonomic sequence of order 3, so applying

binary splitting to (4.7.6)–(4.7.7) then allows computing ζ(s) with softly optimal com-

plexity (this fact was already pointed out in [43]). A drawback of this binary splitting

method is that it rapidly gets slower for larger s, due to the appearance of factors
∏

k k
s

in the denominators, and it does not appear possible to save a significant amount of

time when evaluating ζ(s) for several s simultaneously. Nevertheless, the method is of

interest for computing isolated values of ζ(s) to millions of digits.

Algorithm 4.7.1 is an extension of the sequential implementation of Borwein’s formula

used in the MPFR library [78]. We have omitted the computation of error bounds for

simplicity. Notably, the coefficients d̃k = dn − dk are computed sequentially (in the end

we have d̃0 = dn) and the main part of the computation only uses integer arithmetic.

We have extended the algorithm by adding the inner loop which computes d̃k−1/k
s

for several s in progression. The algorithm has complexity O˜(p2) for each zeta value

whether one calls the function repeatedly with N = 1 and different s or computes several

values at once with N > 1, but the latter is much faster since the divisor u = kh is small

(usually a single machine word) and t moreover shrinks with each iteration (whereas

computing the power on line 6 gets more expensive for larger s).

A benchmark comparison of various algorithms as implemented in the Arb library is

shown in Table 4.8. Borwein’s algorithm with power recycling is the fastest method up

to precisions exceeding 10000 digits. The Stirling series holds up well overall, especially

when computing a large number of derivatives to high precision. As expected, the two

other power series-based algorithms are superior when computing a small number of

gamma function derivatives (equivalently, zeta values) at very high precision. The series

(4.7.2) seems consistently faster than (4.7.4). The latter also gives us the even zeta
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Algorithm 4.7.1 Evaluation of ζ(s+ hj), j = 0 . . . N − 1, s, h ∈ N, s ≥ 2

1: function ZetaBorweinRecycled(s, h,N, p)

2: n← ⌈2 + p log(2)/ log(3 +
√
8)⌉ ⊲ Accuracy of approximately p bits

3: c← d← 22n−1 ⊲ c, d, zi, t, u will be integer variables

4: z0, z1, . . . , zN−1 ← 0

5: for k ← n to 1 do

6: t← (−1)k+1⌊d / ks⌋ ⊲ Approximate division, creating rounding error

7: z0 ← z0 + t

8: u← kh

9: for j ← 1 to N − 1 do

10: t← ⌊t / u⌋ ⊲ Approximate division, creating rounding error

11: zj ← zj + t

12: c← c · k (2k − 1)

13: c← c / (2(n − k + 1)(n + k − 1)) ⊲ Exact integer division

14: d← d+ c

15: for j ← 0 to N − 1 do

16: wj ← zj/(d (1− 21−(s+hj))) ⊲ Approximate division (wj is real)

17: return w0, w1, . . . , wN−1

p n ST S1 S2 B

100 10 0.00075 0.0015 0.0072 0.000089

100 100 0.0047 0.013 0.026 0.00046

1000 10 0.012 0.023 0.14 0.0031

1000 100 0.077 0.29 0.91 0.024

1000 1000 0.57 1.3 4.6 0.071

10000 10 1.5 0.6 3.44 0.22

10000 100 4.61 9.1 22 2.0

10000 1000 16 62 163 17

10000 10000 95 224 727 34

100000 10 410 17 84 23

100000 100 530 213 535 196

100000 1000 1108 1965 5082 2124

100000 10000 3196 12129 36029 16818

Table 4.8: Time in seconds to compute either the Taylor series of Γ(1 + x) to order

O(xn), or to compute the odd zeta values ζ(2k + 1) with 2k + 1 < n, at a precision

of p digits. ST: the Stirling series with binary splitting; S1: the series (4.7.2) with

polynomial binary splitting; S2: the series (4.7.4) with polynomial binary splitting; B:

Borwein’s algorithm with power recycling. Computations were done on a 64-bit Intel

Xeon X5675 3.07 GHz CPU.
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values, but this is not a large advantage since we can compute those faster separately.

An advantage of (4.7.4) is that we also can use it at rational or algebraic z 6= 1.

4.8 The Hurwitz zeta function

The Hurwitz zeta function ζ(s, a) is defined for complex numbers s and a by analytic

continuation of the sum

ζ(s, a) =
∞
∑

k=0

1

(k + a)s
.

The usual Riemann zeta function is given by ζ(s) = ζ(s, 1).

In this section, we consider numerical computation of ζ(s, a) by the Euler-Maclaurin

formula with rigorous error control. Error bounds for ζ(s) are classical (see for example

[36, 15] and numerous references therein), but previous works have restricted to the case

a = 1 or have not considered derivatives. Our main contribution is to give an efficiently

computable error bound for ζ(s, a) valid for any complex s and a and for an arbitrary

number of derivatives with respect to s (equivalently, we allow s to be a formal power

series).

We also discuss implementation aspects, such as parallelization and use of fast polyno-

mial arithmetic. An implementation of ζ(s, a) based on the algorithms described here

is available in the Arb library. In the end of this section, we present results from some

new record computations done with this implementation.

Our interest is in evaluating ζ(s, a) to high precision (hundreds or thousands of digits)

for a single s of moderate height, say with imaginary part less than 106. Investigations

of zeros of large height typically use methods based on the Riemann-Siegel formula and

fast multi-evaluation techniques such as the Odlyzko-Schönhage algorithm [82] or the

recent algorithm of Hiary [49].

This work is motivated by several applications. For example, recent work of Matiyase-

vich and Beliakov required values of thousands of nontrivial zeros ρn of ζ(s) to a precision

of several thousand digits [73, 74]. Investigations of quantities such as the Stieltjes con-

stants γn(a) and the Keiper-Li coefficients λn also call for high-precision values [60, 67].

The difficulty is not necessarily that the final result needs to be known to very high

accuracy, but that intermediate calculations may involve catastrophic cancellation.

More broadly, the Riemann and Hurwitz zeta functions are useful for numerical evalu-

ation of various other special functions such as polygamma functions, polylogarithms,

Dirichlet L-functions, generalized hypergeometric functions at singularities [11], and cer-

tain number-theoretical constants [39]. High-precision numerical values are of particular

interest for guessing algebraic relations among special values of such functions (which
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subsequently may be proved rigorously by other means) or ruling out the existence of

algebraic relations with small norm [5].

4.8.1 Evaluation using the Euler-Maclaurin formula

Assume that f is analytic on a domain containing [N,U ] where N,U ∈ Z, and let M be

a positive integer. Let Bn denote the n-th Bernoulli number and let B̃n(t) = Bn(t−⌊t⌋)
denote the n-th periodic Bernoulli polynomial. The Euler-Maclaurin summation formula

(described in numerous works, such as [84]) states that

U
∑

k=N

f(k) = I + T +R (4.8.1)

where

I =

∫ U

N
f(t) dt, (4.8.2)

T =
1

2
(f(N) + f(U)) +

M
∑

k=1

B2k

(2k)!

(

f (2k−1)(U)− f (2k−1)(N)
)

, (4.8.3)

R = −
∫ U

N

B̃2M (t)

(2M)!
f (2M)(t) dt. (4.8.4)

If f decreases sufficiently rapidly, (4.8.1)–(4.8.4) remain valid after letting U →∞. To

evaluate the Hurwitz zeta function, we set

f(k) =
1

(a+ k)s
= exp(−s log(a+ k))

with the conventional logarithm branch cut on (−∞, 0). The derivatives of f(k) are

given by

f (r)(k) =
(−1)r(s)r
(a+ k)s+r

where (s)r = s(s + 1) · · · (s + r − 1) denotes a rising factorial. The Euler-Maclaurin

summation formula now gives, at least for ℜ(s) > 1 and a 6= 0,−1,−2, . . .,

ζ(s, a) =

N−1
∑

k=0

f(k) +

∞
∑

k=N

f(k) = S + I + T +R (4.8.5)

where

S =

N−1
∑

k=0

1

(a+ k)s
, (4.8.6)

I =

∫ ∞

N

1

(a+ t)s
dt =

(a+N)1−s

s− 1
, (4.8.7)

T =
1

(a+N)s

(

1

2
+

M
∑

k=1

B2k

(2k)!

(s)2k−1

(a+N)2k−1

)

, (4.8.8)

R = −
∫ ∞

N

B̃2M (t)

(2M)!

(s)2M
(a+ t)s+2M

dt. (4.8.9)
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If we choose N and M such that ℜ(a+N) > 0 and ℜ(s+2M − 1) > 0, the integrals in

I and R are well-defined, giving us the analytic continuation of ζ(s, a) to s ∈ C except

for the pole at s = 1.

To evaluate derivatives with respect to s of ζ(s, a), we substitute s→ s+ x ∈ C[[x]] and

evaluate (4.8.5)–(4.8.9) with the corresponding arithmetic operations done on formal

power series (which may be truncated at some arbitrary finite order in an implementa-

tion). For example, the summand in (4.8.6) becomes

1

(a+ k)s+x
=

∞
∑

i=0

(−1)i log(a+ k)i

(a+ k)s
xi ∈ C[[x]]. (4.8.10)

Note that we can evaluate ζ(S, a) for any formal power series S = s + s1x+ s2x
2 + . . .

by first evaluating ζ(s+ x, a) and then formally right-composing by S − s. We can also

easily evaluate derivatives of ζ(s, a)−1/(s−1) at s = 1. The pole of ζ(s, a) only appears

in the term I on the right hand side of (4.8.5), so we can remove the singularity as

lim
s→1

[

I − 1

(s+ x)− 1
=

(a+N)1−(s+x)

(s+ x)− 1
− 1

(s+ x)− 1

]

=

∞
∑

i=0

(−1)i+1 log(a+N)i+1

i!
xi ∈ C[[x]]. (4.8.11)

We now wish to bound the coefficientwise error |R(s + x)| (using the notation in sec-

tion 4.2) where R(s) = R is the remainder integral given in (4.8.9).

To express the error bound in a compact form, we introduce the sequence of integrals

defined for integers k ≥ 0 and real parameters A > 0, B > 1, C ≥ 0 by

Jk(A,B,C) ≡
∫ ∞

A
t−B(C + log t)kdt.

Using the binomial theorem, Jk(A,B,C) can be evaluated in closed form for any fixed k.

In fact, collecting factors gives

Jk(A,B,C) =
Lk

(B − 1)k+1AB−1

where L0 = 1, Lk = kLk−1 +Dk and D = (B − 1)(C + logA). This recurrence allows

computing J0, J1, . . . , Jn easily, using O(n) arithmetic operations.

Theorem 4.8.1. Given complex numbers s = σ + τi, a = α+ βi and positive integers

N,M such that α+N > 1 and σ+2M > 1, the error term (4.8.9) in the Euler-Maclaurin

summation formula applied to ζ(s+ x, a) ∈ C[[x]] satisfies

|R(s + x)| ≤ 4 |(s+ x)2M |
(2π)2M

∣

∣

∣

∣

∣

∞
∑

k=0

Rkx
k

∣

∣

∣

∣

∣

∈ R[[x]] (4.8.12)
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where Rk ≤ (K/k!)Jk(N + α, σ + 2M,C), with

C =
1

2
log

(

1 +
β2

(α +N)2

)

+ atan

( |β|
α+N

)

(4.8.13)

and

K = exp

(

max

(

0, τ atan

(

β

α+N

)))

. (4.8.14)

Proof. We have

|R(s+ x)| =
∣

∣

∣

∣

∣

∫ ∞

N

B̃2M (t)

(2M)!

(s+ x)2M
(a+ t)s+x+2M

dt

∣

∣

∣

∣

∣

≤
∫ ∞

N

∣

∣

∣

∣

∣

B̃2M (t)

(2M)!

(s+ x)2M
(a+ t)s+x+2M

∣

∣

∣

∣

∣

dt

≤ 4 |(s+ x)2M |
(2π)2M

∫ ∞

N

∣

∣

∣

∣

1

(a+ t)s+x+2M

∣

∣

∣

∣

dt

where the last step invokes the fact that

|B̃2M (t)| < 4(2M)!

(2π)2M
.

Thus it remains to bound the coefficients Rk satisfying

∫ ∞

N

∣

∣

∣

∣

1

(a+ t)s+x+2M

∣

∣

∣

∣

dt =
∑

k

Rkx
k, Rk =

∫ ∞

N

1

k!

∣

∣

∣

∣

log(a+ t)k

(a+ t)s+2M

∣

∣

∣

∣

dt.

By the assumption that α+ t ≥ α+N ≥ 1, we have

| log(α+ βi+ t)| =
∣

∣

∣

∣

log(α+ t) + log

(

1 +
βi

α+ t

)∣

∣

∣

∣

≤ log(α+ t) +

∣

∣

∣

∣

log

(

1 +
βi

α+ t

)∣

∣

∣

∣

= log(α+ t) +

∣

∣

∣

∣

1

2
log

(

1 +
β2

(α+ t)2

)

+ i atan

(

β

α+ t

)∣

∣

∣

∣

≤ log(α+ t) + C

where C is defined as in (4.8.13). By the assumption that σ + 2M > 1, we have

1

|(α + βi+ t)σ+τi+2M | =
exp(τ arg(α+ βi+ t))

|α+ βi+ t|σ+2M
≤ K

(α+ t)σ+2M

whereK is defined as in (4.8.14). Bounding the integrand in Rk in terms of the integrand

in the definition of Jk now gives the result.

The bound given in Theorem 4.8.1 should generally approximate the exact remainder

(4.8.9) quite well, even for derivatives of large order, if |a| is not too large. The quan-

tity K is especially crude, however, as it does not decrease when |a + t|−τi decreases
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exponentially as a function of τ . We have made this simplification in order to obtain

a bound that is easy to evaluate for all s, a. In fact, assuming that a is small, we can

simplify the bounds a bit further using

C ≤ β2

2(α+N)2
+

|β|
(α+N)

.

In practice, the Hurwitz zeta function is usually only considered for 0 < a ≤ 1, unless s

is an integer greater than 1 in which case it reduces to a polygamma function of a. It

is easy to derive error bounds for polygamma functions that are accurate for large |a|,
and we do not consider this special case further here.

4.8.2 Algorithmic matters

The evaluation of ζ(s+ x, a) can be broken into three stages:

1. Choosing parameters M and N and bounding the remainder R.

2. Evaluating the power sum S.

3. Evaluating the tail T (and the trivial term I).

In this section, we describe some algorithmic techniques that are useful at each stage.

We sketch the computational complexities, but do not attempt to prove strict complexity

bounds.

We assume that arithmetic on real and complex numbers is done using ball arith-

metic [103], which essentially is floating-point arithmetic with the added automatic

propagation of error bounds. This is probably the most reasonable approach: a priori

floating-point error analysis would be overwhelming to do in full generality (an analysis

of the floating-point error when evaluating ζ(s) for real s, with a partial analysis of the

complex case, is given in [88]).

Evaluating the error bound

For a precision of P bits, we should choose N ∼ M ∼ P . A simple strategy is to do a

binary search for an N that makes the error bound small enough when M = cN where

c ≈ 1. This is sufficient for our present purposes, but more sophisticated approaches are

possible. In particular, for evaluation at large heights in the critical strip, N should be

larger than M .

Given complex balls for s and a, and integers N and M , we can evaluate the error bound

(4.8.12) using ball arithmetic. The output is a power series with ball coefficients. The

57



absolute value of each coefficient in this series should be added to the radius for the

corresponding coefficient in S+ I+T ≈ ζ(s+x, a) at the end of the whole computation.

If the assumptions that ℜ(a)+N > 1 and ℜ(s)+ 2M > 1 are not satisfied for all points

in the balls s and a, we set the error bounds for all coefficients to +∞.

If we are computing D derivatives and D is large, the rising factorial |(s + x)2M | can
be computed using binary splitting and the outer power series product in (4.8.12) can

be done using fast polynomial multiplication, so that only O˜(D + M) real number

operations are required. Or, if D is small and M is large, |(s+ x)2M | can be computed

via the gamma function in time independent of M

Evaluating the power sum

As a power series, the power sum S becomes
∑N−1

k=0 (
∑

i ci(k)x
i) where the coefficients

ci(k) are given by (4.8.10). For i ≥ 1, the coefficients can be computed using the

recurrence

ci+1(k) = −
log(a+ k)

i+ 1
ci(k).

If we are computing D derivatives with a working precision of P bits, the complexity

of evaluating the power sum is O˜(DNP ), or O˜(DN2) if N ∼ P . The computation is

easy to parallelize by assigning a range of k values to each thread (for large D, a more

memory-efficient method is to assign a range of i to each thread).

When evaluating the ordinary Riemann zeta function, i.e. when a = 1, and we just

want to compute a small number of derivatives, we can speed up the power sum a bit.

Writing the sum as
∑N

k=1 f(k), the terms f(k) = k−(s+x) are completely multiplicative,

i.e. f(k1k2) = f(k1)f(k2). This means that we only need to evaluate f(k) from scratch

when k is prime; when k is composite, a single multiplication is sufficient.

This method has two drawbacks: we have to store previously computed terms, which

requires O(DNP ) space, and the power series multiplication f(k1)f(k2) becomes more

expensive than evaluating f(k1k2) from scratch for large D. For both reasons, this

method is only useful when D is quite small (say D ≤ 4).

We can avoid some redundant work by collecting multiples of small primes. For example,

if we extract all powers of two,
∑10

k=1 f(k) can be written as

[f(1) + f(3) + f(5) + f(7) + f(9)]

+f(2) [f(1) + f(3) + f(5)]

+f(4) [f(1)]

+f(8) [f(1)].
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Algorithm 4.8.1 Sieved summation of a completely multiplicative function

Input: A function f such that f(jk) = f(j)f(k) for j, k ∈ Z≥1, and an integer N ≥ 1

Output:
∑N

k=1 f(k)

1: p← 2⌊log2 N⌋ (largest power of two such that p ≤ N)

2: h← 1, z ← 0, u← 0

3: D = [ ] ⊲ Build table of divisors

4: for k ← 1; k ≤ N ; k ← k + 2 do

5: D[k]← 0

6: for k ← 3; k ≤ ⌊
√
N⌋; k ← k + 2 do

7: if D[k] = 0 then

8: for j ← k2; j ≤ N ; j ← j + 2k do

9: D[j]← k

10: F = [ ] ⊲ Create initially empty cache of f(k) values

11: F [2]← f(2)

12: for k ← 1; k ≤ N ; k ← k + 2 do

13: if D[k] = 0 then ⊲ k is prime (or 1)

14: t← f(k)

15: else

16: t← F [D[k]]F [k/D[k]] ⊲ k is composite

17: if 3k ≤ N then

18: F [k]← t ⊲ Store f(k) for future use

19: u← u+ t

20: while k = h and p 6= 1 do ⊲ Horner’s rule

21: z ← u+ F [2]z

22: p← p/2

23: h← ⌊N/p⌋
24: if h is even then

25: h← h− 1

26: return u+ F [2]z
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This is a polynomial in f(2) and can be evaluated from bottom to top using Horner’s

rule while progressively adding the terms in the brackets. Asymptotically, this reduces

the number of multiplications and the size of the tables by half. Algorithm 4.8.1 im-

plements this trick, and requires about π(N) ≈ N/ logN evaluations of f(k) and N/2

multiplications, at the expense of having to store about N/6 function values plus a table

of divisors of about N/2 integers. Constructing the table of divisors using the sieve of

Eratosthenes requires O(N log logN) integer operations, but this cost is negligible when

multiplications and f(k) evaluations are expensive. One could also extract other powers

besides 2 (for example powers of 3 and 5), but this gives diminishing returns.

Another trick that can save time at high precision is to avoid computing the logarithms

of integers from scratch. If q and p are nearby integers (such as two consecutive primes)

and we already know log(p), we can use the identity

log(q) = log(p) + 2 atanh

(

q − p

q + p

)

and evaluate the inverse hyperbolic tangent by applying binary splitting to its Taylor

series. This is not an asymptotic improvement over the best known algorithm for com-

puting the logarithm (which uses the arithmetic-geometric mean), but likely faster in

practice.

If D ∼ N , we can improve the asymptotic complexity of computing S to O˜(DP ),

which is softly optimal in the bit size of the output (the author thanks David Harvey

for sharing this observation). The vector of coefficients ((−1)kk![xk]S)D−1
k=0 is given by

V TY where

V =













1 log a · · · logD−1 a

1 log(a+ 1) · · · logD−1(a+ 1)
...

...
. . .

...

1 log(a+N − 1) · · · logD−1(a+N − 1)













, Y =













a−s

(a+ 1)−s

...

(a+N − 1)−s













.

It is well known that multiplying a vector from the left by the Vandermonde matrix V

can be done in O˜(N) coefficent operations in what amounts to fast multipoint evalu-

ation. Multiplying a vector from the left by V T when D ∼ N then has essentially the

same complexity according to the transposition principle (this problem is discussed, for

example, in [38]).

Evaluating the tail

Except for the multiplication by Bernoulli numbers, the terms of the tail sum T satisfy

a simple (hypergeometric) recurrence relation. When we are computing D derivatives

with a working precision of P bits, the complexity of evaluating the tail by repeated
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application of the recurrence relation is O˜(DMP ), or O˜(DP 2) if M ∼ P . We can do

better if D is large, using binary splitting (Algorithm 4.8.2).

Algorithm 4.8.2 Evaluation of the tail T using binary splitting

Input: s, a ∈ C and N,M,D ∈ Z≥1

Output: T =
1

(a+N)s+x

(

1

2
+

M
∑

k=1

B2k

(2k)!

(s + x)2k−1

(a+N)2k−1

)

∈ C[[x]]/〈xD〉

1: Let x denote the generator of C[[x]]/〈xD〉
2: function BinSplit(j, k)

3: if j + 1 = k then

4: if j = 0 then

5: P ← (s+ x)/(2(a +N))

6: else

7: P ← (s+ 2j − 1 + x)(s+ 2j + x)

(2j + 1)(2j + 2)(a +N)2

8: return (P, B2j+2P )

9: else

10: (P1, R1)← BinSplit(j, ⌊(j + k)/2⌋)
11: (P2, R2)← BinSplit(⌊(j + k)/2⌋, k)
12: return (P1P2, R1 + P1R2) ⊲ Polynomial multiplications mod xD

13: (P, R)← BinSplit(0,M)

14: T ← (a+N)−(s+x)(1/2 +R) ⊲ Polynomial multiplication mod xD

15: return T

If D ∼ M , the complexity with binary splitting is only O˜(PD), or softly optimal in

the bit size of the output. A drawback is that the intermediate products increase the

memory consumption.

4.8.3 Implementation and benchmarks

We have implemented the Hurwitz zeta function for s ∈ C[[x]] and a ∈ C with rigorous

error bounds as part of the Arb library. Our implementation incorporates most of

the techniques discussed in the previous section, including optional parallelization of

the power sum (we have not implemented the fast algorithm based on multiplication

by a transposed Vandermonde matrix). Bernoulli numbers are computed using the

algorithm of Bloemen [10]. In the remainder of this section, we present the results of

some computations done with our implementation.
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Computing zeros to high precision

For n ≥ 1, let ρn denote the n-th smallest zero of ζ(s) with positive imaginary part.

We assume that ρn is simple and has real part 1/2. Using Newton’s method, we can

evaluate ρn to high precision nearly as fast as we can evaluate ζ(s) for s near ρn.

It is convenient to work with real numbers. The ordinate tn = ℑ(ρn) is a simple zero of

the real-valued function Z(t) = eiθ(t)ζ(1/2 + it) where

θ(t) =
log Γ

(

2it+1
4

)

− log Γ
(−2it+1

4

)

2i
− log π

2
t.

We assume that we are given an isolating ball B0 = [m0− ε0,m0+ ε0] such that tn ∈ B0

and tm 6∈ B0,m 6= n, and wish to compute tn to high precision (finding such a ball for a

given n is an interesting problem, but we do not consider it here).

Newton’s method maps an approximation zn of a root of a real analytic function f(z)

to a new approximation zn+1 via zn+1 = zn− f(zn)/f
′(zn). Using Taylor’s theorem, the

error can be shown to satisfy

|ǫn+1| =
|f ′′(ξn)|
2 |f ′(zn)|

|ǫn|2

for some ξn between zn and the root.

As a setup step, we evaluate Z(s), Z ′(s), Z ′′(s) (simultaneously using power series arith-

metic) at s = B0, and compute

C =
max |Z ′′(B0)|
2min |Z ′(B0)|

.

This only needs to be done at low precision.

Starting from an input ball Bk = [mk − εk,mk + εk], one step with Newton’s method

gives an output ball Bk+1 = [mk+1−εk+1,mk+1+εk+1]. The updated midpoint is given

by

mk+1 = mk −
Z(mk)

Z ′(mk)
(4.8.15)

where we evaluate Z(mk) and Z ′(mk) simultaneously using power series arithmetic. The

updated radius is given by εk+1 = ε′k+1 + Cε2k where ε′k+1 is the numerical error (or a

bound thereof) resulting from evaluating (4.8.15) using finite-precision arithmetic. The

new ball is valid as long as Bk+1 ⊆ Bk (if this does not hold, the algorithm fails and we

need to start with a better B0 or increase the working precision).

For best performance, the evaluation precision should be chosen so that ε′k+1 ≈ Cε2k.

In other words, for a target accuracy of p bits, the evaluations should be done at

. . . , p/4, p/2, p bits, plus some guard bits.
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Digits mpmath Mathematica Arb

ρ̃1 ζ(ρ̃1) ρ̃1 ζ(ρ̃1) ρ̃1 ζ(ρ̃1)

100 0.080 0.0031 0.044 0.012 0.012 0.0011

1000 7.1 0.24 11 1.6 0.18 0.05

10000 7035 252 5127 779 29 15

100000 - - - - 6930 3476

303000 - - - - 73225 31772

Table 4.9: Time in seconds to compute an approximation ρ̃1 of the first nontrivial zero

ρ1 accurate to the specified number of decimal digits, and then to evaluate ζ(ρ̃1) at

the same precision. Computations were done on a 64-bit Intel Xeon E5-2650 2.00 GHz

CPU.

As a benchmark problem, we compute an approximation ρ̃1 of the first nontrivial zero

ρ1 ≈ 1/2 + 14.1347251417i and then evaluate ζ(ρ̃1) to the same precision. We compare

our implementation of the zeta function and the root-refinement algorithm described

above (starting from a double-precision isolating ball) with the zetazero and zeta

functions provided in mpmath version 0.17 in Sage 5.10 [97] and the ZetaZero and

Zeta functions provided in Mathematica 9.0. The results of this benchmark are shown

in Table 4.9. At 10000 digits, our code for computing the zero is about two orders of

magnitude faster than the other systems, and the subsequent single zeta evaluation is

about one order of magnitude faster.

We have computed ρ1 to 303000 digits, or slightly more than one million bits, which

appears to be a record (a 20000-digit value is given in [74]). The computation used up

to 62 GiB of memory for the sieved power sum and the storage of Bernoulli numbers

up to B325328 (to attain even higher precision, the memory usage could be reduced by

evaluating the power sum without sieving, perhaps using several CPUs in parallel, and

not caching Bernoulli numbers).

Computing the Keiper-Li coefficients

Riemann’s function ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s) satisfies the symmetric functional

equation ξ(s) = ξ(1− s). The coefficients {λn}∞n=1 defined by

log ξ

(

1

1− x

)

= log ξ

(

x

x− 1

)

= − log 2 +
∞
∑

n=1

λnx
n

were introduced by Keiper [60], who noted that the truth of the Riemann hypothesis

would imply that λn > 0 for all n > 0. In fact, Keiper observed that if one makes an

assumption about the distribution of the zeros of ζ(s) that is even stronger than the
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n = 1000 n = 10000 n = 100000

1: Error bound 0.017 1.0 97

1: Power sum 0.048 47 65402

(1: Power sum, CPU time) (0.65) (693) (1042210)

1: Bernoulli numbers 0.0020 0.19 59

1: Tail 0.058 11 1972

2: Series logarithm 0.047 8.5 1126

3: log Γ(1 + x) series 0.019 3.0 1610

4: Composition 0.022 4.1 593

Total wall time 0.23 84 71051

Peak RAM usage (MiB) 8 730 48700

Table 4.10: Elapsed time in seconds to evaluate the Keiper-Li coefficients λ0 . . . λn with a

working precision of 1.1n+50 bits, giving roughly 0.1n accurate bits. The computations

were done on a multicore system with 64-bit Intel Xeon E7-8837 2.67 GHz CPUs (16

threads were used for the power sum, and all other parts were computed sequentially

on a single core).

Riemann hypothesis, the coefficients λn should behave as

λn ≈ (1/2) (log n− log(2π) + γ − 1) . (4.8.16)

Keiper presented numerical evidence for this conjecture by computing λn up to n = 7000,

showing that the approximation error appears to fluctuate increasingly close to zero.

Some years later, Li proved [72] that the Riemann hypothesis actually is equivalent to

the positivity of λn for all n > 0 (this reformulation of the Riemann hypothesis is known

as Li’s criterion). Recently, Arias de Reyna has proved that a certain precise statement

of (4.8.16) also is equivalent to the Riemann hypothesis [4].

A computation of the Keiper-Li coefficients up to n = 100000 shows agreement with

Keiper’s conjecture (and the Riemann hypothesis), as illustrated in Figure 4.4. We

obtain λ100000 = 4.62580782406902231409416038 . . . (plus about 2900 more accurate

digits), whereas (4.8.16) gives λ100000 ≈ 4.626132. Empirically, we need a working

precision of about n bits to determine λn accurately. A breakdown of the computation

time to determine the signs of λn up to n = 1000, 10000 and 100000 is shown in Table

4.10.

Our computation of the Keiper-Li coefficients uses the formula

log ξ(s) = log(−ζ(s)) + log Γ
(

1 +
s

2

)

+ log(1− s)− s log π

2

which we evaluate at s = x ∈ R[[x]]. This arrangement of the terms avoids singularities

and branch cuts at the expansion point. We carry out the following steps (plus some

more trivial operations):
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Figure 4.4: Plot of n (λn − (log n− log(2π) + γ − 1)/2).

1. Computing the series expansion of ζ(s) at s = 0.

2. Computing the logarithm of a power series, i.e. log f(x) =
∫

f ′(x)/f(x)dx.

3. Computing the series expansion of log Γ(s) at s = 1, i.e. computing the sequence

of values γ, ζ(2), ζ(3), ζ(4), . . ..

4. Finally, right-composing by x/(x− 1) to obtain the Keiper-Li coefficients.

Step 2 requires O(M(n)) arithmetic operations on real numbers. For step 3, see the

remarks in section 4.7. There is a very fast way to perform step 4. For f =
∑∞

k=0 akx
k ∈

C[[x]], the binomial (or Euler) transform T : C[[x]]→ C[[x]] is defined by

T [f(x)] =
1

1− x
f

(

x

x− 1

)

=

∞
∑

n=0

(

n
∑

k=0

(−1)k
(

n

k

)

ak

)

xn.

We have

f

(

x

x− 1

)

= a0 + xT

[

a0 − f

x

]

.

If B : C[[x]]→ C[[x]] denotes the Borel transform

B

[ ∞
∑

k=0

akx
k

]

=

∞
∑

k=0

ak
k!

xk,

then (see [42]) T [f(x)] = B−1[exB[f(−x)]]. This identity gives an algorithm for evaluat-

ing the composition which requires only M(n) +O(n) coefficient operations. Moreover,
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this algorithm is numerically stable (in the sense that it does not significantly increase

errors from the input when using ball arithmetic), provided that a numerically stable

polynomial multiplication algorithm is used.

The composition could also be carried out using various generic algorithms for compo-

sition of power series. We tested three other algorithms, and found them to perform

much worse:

• Horner’s rule is slow (requiring about nM(n) operations) and is numerically un-

satisfactory in the sense that it gives extremely poor error bounds with ball arith-

metic.

• The Brent-Kung algorithm BK 2.1 turns out to give adequate error bounds, but

uses about O(n1/2
M(n) + n2) operations which still is expensive for large n.

• We also tried binary splitting: to evaluate f(p/q) where f is a power series and

p and q are polynomials, we recursively split the evaluation in half and keep nu-

merator and denominator polynomials separated. In the end, we perform a single

power series division. This only costs O(M(n) log n) operations, but turns out

to be numerically unstable. It would be of independent interest to investigate

whether this algorithm can be modified to avoid the stability problem.

Computing the Stieltjes constants

The generalized Stieltjes constants γn(a) are defined by

ζ(s, a) =
1

s− 1
+

∞
∑

n=0

(−1)n
n!

γn(a) (s− 1)n.

The “usual” Stieltjes constants are γn(1) = γn, and γ0 = γ ≈ 0.577216 is Euler’s

constant. The Stieltjes constants were first studied over a century ago. Some historical

notes and numerical values of γn for n ≤ 20 are given in [12]. Keiper [60] provides

a method for computing the Stieltjes constants based on numerical integration and

recurrence relations, and lists various γn up to n = 150. This algorithm is implemented

in Mathematica [111].

More recently, Kreminski [67] has given an algorithm for the Stieltjes constants, also

based on numerical integration but different from Keiper’s. He reports having computed

γn to a few thousand digits for all n ≤ 10000, and provides further isolated values up to

γ50000 (accurate to 1000 digits) as well as tables of γn(a) with various a 6= 1.

The best proven bounds for the Stieltjes constants appear to be very pessimistic. In a

recent paper, Knessl and Coffey [62] give an asymptotic approximation formula for the
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Stieltjes constants that seems to be very accurate even for small n. Based on numerical

computations done with Mathematica, they note that their approximation correctly

predicts the sign of γn up to at least n = 35000 with the single exception of n = 137.

Our implementation immediately gives the generalized Stieltjes constants by computing

the series expansion of ζ(s, a)−1/(s−1) at s = 1 using (4.8.11). The costs are similar to

those for computing the Keiper-Li coefficients: due to ill-conditioning, it appears that

we need about n + p bits of precision to determine γn with p bits of accuracy. This

makes our method somewhat unattractive for computing just a few digits of γn when n

is large, but reasonably good if we want a large number of digits. Our method is also

useful if we want to compute a table of all the values γ0, . . . , γn simultaneously.

For example, we can compute γn for all n ≤ 1000 to 1000-digit accuracy in just over 10

seconds on a single CPU. Computing the single coefficient γ1000 to 1000-digit accuracy

with Mathematica 9.0 takes 80 seconds, with an estimated 20 hours required for all

n ≤ 1000. Thus our implementation is nearly four orders of magnitude faster. We

can compute a table of accurate values of γn for all n ≤ 10000 in a few minutes on an

ordinary workstation with around one GiB of memory.

We have computed all γn up to n = 100000 using a working precision of 125050 bits,

resulting in an accuracy from about 37640 decimal digits for γ0 to about 10860 accurate

digits for γ100000. The computation took 26 hours on a multicore system with 16 threads

utilized for the power sum, with a peak memory consumption of about 80 GiB during

the binary splitting evaluation of the tail. As shown in Figure 4.5, the accuracy of the

Knessl-Coffey approximation approaches six digits on average. Our computation gives

γ100000 = 1.991927306312541095658 . . .×1083432, while the Knessl-Coffey approximation

gives γn ≈ 1.9919333×1083432 . We are able to confirm that n = 137 is the only instance

for n ≤ 100000 where the Knessl-Coffey approximation has the wrong sign.

In [61], Knessl and Coffey extend their asymptotic approximation formula to a 6= 1.

Their approximation gives, for example, the estimate

γ50000(1 + i) ≈ (1.0324943 − 1.4419586i) × 1039732

while we compute (rounded to 15 decimal digits)

γ50000(1 + i) = (1.03250208743188 − 1.44196255284053i) × 1039732.

We emphasize that our implementation computes γn(a) with proved error bounds, while

the other cited works and implementations (to our knowledge) depend on heuristic error

estimates.

We have not yet implemented a function for computing isolated Stieltjes constants of

large index; this would have roughly the same running time as the evaluation of the
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Figure 4.5: Plot of the relative error |γn − γ̃n|/|γn| of the Knessl-Coffey approximation

for the Stieltjes constants. The error exhibits a complex oscillation pattern.

tail (since only a single derivative of the power sum would have to be computed). The

memory consumption is highest when evaluating the tail, and would therefore remain

the same.

4.8.4 Remarks

One direction for further work would be to improve the error bounds for large |a| and to

investigate strategies for selecting N and M optimally, particularly when the number of

derivatives is large. It would also be interesting to investigate parallelization of the tail

sum, or look for ways to evaluate a single derivative of high order of the tail in a memory-

efficient way. Further constant-factor improvements are possible in an implementation,

for example by reducing the precision of terms that have small magnitude (rather than
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naively performing all operations at the same precision). It would also be interesting to

implement the asymptotically fast algorithm for the power sum when computing many

derivatives.

Finally, it would be interesting to compare the efficiency of the Euler-Maclaurin formula

with other approaches to evaluating the Hurwitz zeta function such as the algorithms

of Borwein [17], Vepštas [105] and Coffey [34].
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Chapter 5

Computing the partition function

Let p(n) denote the number of partitions of n, i.e. the number of ways that n can be

written as a sum of positive integers without regard to the order of the terms (A000041

in [83]). For instance 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 =

1 + 1 + 1 + 1 + 1, so p(5) = 7. A few more values are p(10) = 42, p(100) = 190569292,

p(1000) = 24061467864032622473692149727991. Clearly, the last value was not found

by explicitly listing all the partitions of 1000.

5.1 The pentagonal number theorem

It is a classical result of Euler, known as the pentagonal number theorem, that the

generating function of p(n) satisfies

∞
∑

n=0

p(n)xn =
1

φ(x)
(5.1.1)

where

φ(x) =
∞
∏

k=1

(1− xk) =
∞
∑

k=−∞
(−1)kxk(3k−1)/2. (5.1.2)

The function η(τ) = q1/24φ(q), where q = e2πiτ , is called the Dedekind eta function,

and it is an example of a modular form. From (5.1.2), Euler also derived the recursive

formula

p(n) =

n
∑

k=1

(−1)k+1

(

p

(

n− k(3k − 1)

2

)

+ p

(

n− k(3k + 1)

2

))

. (5.1.3)

MacMahon famously used (5.1.3) to compute p(n) up to n = 200 by hand. When
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examining MacMahon’s table, Ramanujan discovered the congruences

p(5k + 4) ≡ 0 mod 5

p(7k + 5) ≡ 0 mod 7

p(11k + 6) ≡ 0 mod 11

which he later also proved. Ramanujan’s congruences have inspired a vast amount of

research, providing an excellent example of the usefulness of the computational approach

to number theory.

Determining the list of values p(0), p(1), . . . , p(n− 1), p(n) using (5.1.3) requires O(n1.5)

arithmetic operations. Applying power series inversion to the right-hand side of (5.1.2)

with an FFT-based multiplication algorithm requires O(M(n)) arithmetic operations,

giving a nearly optimal procedure for multi-evaluation of the partition function.

An attractive feature of the pentagonal number theorom, in both the recursive and FFT

incarnations, is that the values can be computed more efficiently modulo a small prime

number. This is useful for investigating partition function congruences, such as in a

recent large-scale computation of p(n) modulo small primes for n up to 109 [80].

5.2 The Hardy-Ramanujan-Rademacher formula

While efficient for computing p(n) for all n up to some limit, the pentagonal number

theorem is impractical for evaluating p(n) for an isolated, large n. One of the most

astonishing number-theoretical discoveries of the 20th century is the Hardy-Ramanujan-

Rademacher formula, first given as an asymptotic expansion by Hardy and Ramanujan

in 1917 [46] and subsequently refined to an exact representation by Rademacher in

1936 [91], which provides a direct and computationally efficient expression for the single

value p(n).

Simplified to a first-order estimate, the Hardy-Ramanujan-Rademacher (HRR) formula

states that

p(n) ∼ 1

4n
√
3
eπ
√

2n/3, (5.2.1)

from which one gathers that p(n) is a number with roughly n1/2 decimal digits. The
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full version can be stated as

p(n) =

(

N
∑

k=1

T (n, k)

)

+R(n,N), (5.2.2)

T (n, k) =

(

√

3

k

4

24n − 1

)

Ak(n) U

(

C(n)

k

)

, (5.2.3)

U(x) = cosh(x)− sinh(x)

x
, (5.2.4)

C(n) =
π

6

√
24n− 1, (5.2.5)

Ak(n) =
k−1
∑

h=0

δgcd(h,k),1 exp

(

πi

[

s(h, k)− 2hn

k

])

(5.2.6)

where s(h, k) is the Dedekind sum

s(h, k) =

k−1
∑

i=1

i

k

(

hi

k
−
⌊

hi

k

⌋

− 1

2

)

(5.2.7)

and where the remainder satisfies |R(n,N)| < M(n,N) with

M(n,N) =
44π2

225
√
3
N−1/2 +

π
√
2

75

(

N

n− 1

)1/2

sinh

(

π

N

√

2n

3

)

. (5.2.8)

It is easily shown that M(n, cn1/2) ∼ n−1/4 for every positive c. Rademacher’s bound

(5.2.8) therefore implies that O(n1/2) terms in (5.2.2) suffice to compute p(n) exactly

by forcing |R(n,N)| < 1/2 and rounding to the nearest integer. For example, we can

take N = ⌈n1/2⌉ when n ≥ 65.

The main result which we prove in this chapter is the following:

Theorem 5.2.1. The value p(n) can be computed using O(n1/2 log4+o(1) n) bit opera-

tions.

Since p(n) has Θ(n1/2) bits, we show that the partition function can be computed in

softly optimal time. The possibility to compute p(n) in softly optimal time was already

suggested by Odlyzko [81], but he did not give a proof or a complete algorithm. In

fact, even with the use of fast arithmetic, the steps required to achieve a softly optimal

complexity bound are nontrivial.

The existence of a softly optimal algorithm to compute p(n) is interesting since the

partition function is not known to belong to any general class of sequences for which

this property holds “automatically”. For example, Fibonacci numbers and factorials are

P-finite and can therefore be computed fast, but p(n) is not P-finite (since its generating

function has a natural boundary of analyticity on the unit circle).
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In contrast to the case of integer partitions, no softly optimal algorithm is known for

counting set partitions, i.e. isolated values in the sequence of Bell numbers Bn defined

by
∞
∑

n=0

Bn

n!
xn = ee

x−1.

Multi-evaluation of Bell numbers can nonetheless be done nearly optimally using fast

power series arithmetic.

The computational utility of the Hardy-Ramanujan-Rademacher formula was realized

before the availability of electronic computers. For instance, Lehmer [68] used it to

verify Ramanujan’s conjectures p(599) ≡ 0 mod 53 and p(721) ≡ 0 mod 112.

Implementations are now available in numerous mathematical software systems, includ-

ing Pari/GP, Maple, Mathematica and Sage. However, apart from Odlyzko’s remark,

we find few algorithmic accounts of the Hardy-Ramanujan-Rademacher formula in the

literature, nor any investigation into the optimality of the available implementations.

We have implemented the partition function in the FLINT and Arb libraries, and observe

that our implementations behave quasioptimally in practice, improving on the speed of

previously published software by more than two orders of magnitude.

We benchmark our code by computing some extremely large isolated values of p(n). We

also investigate efficiency compared to power series methods for evaluation of multiple

values, and finally apply our implementation in FLINT to the problem of computing

congruences for p(n).

5.3 Evaluating the exponential sums

A naive implementation of formulas (5.2.2)–(5.2.7) requires O(n3/2) integer operations

to evaluate Dedekind sums, and O(n) numerical evaluations of complex exponentials (or

cosines, since the imaginary parts ultimately cancel out). In the following section, we

describe how the number of integer operations and cosine evaluations can be reduced,

for the moment ignoring numerical evaluation.

A first improvement, used for instance in Bober’s implementation of p(n) for the Sage

computer algebra system, is to recognize that Dedekind sums can be evaluated in

O(log k) steps using a GCD-style algorithm, as described by Apostol [3], or with Knuth’s

fraction-free algorithm [63] which avoids the overhead of rational arithmetic. This re-

duces the total number of integer operations to O(n log n), which is a dramatic im-

provement but still leaves the cost of computing p(n) quadratic in the size of the final

result.
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Fortunately, the Ak(n) sums have additional structure as discussed in [69, 70, 92, 110,

86], allowing the computational complexity to be reduced. Since numerous implementers

of the Hardy-Ramanujan-Rademacher formula until now appear to have overlooked these

results, it seems appropriate that we reproduce the main formulas and assess the com-

putational issues in more detail.

5.3.1 A simple algorithm

Using properties of the Dedekind eta function, one can derive the formula (which White-

man [110] attributes to Selberg)

Ak(n) =

(

k

3

)1/2
∑

(3l2+l)/2≡−n mod k

(−1)l cos
(

6l + 1

6k
π

)

(5.3.1)

in which the summation ranges over 0 ≤ l < 2k and only O(k1/2) terms are nonzero.

With a simple brute force search for solutions of the quadratic equation, this represen-

tation provides a way to compute Ak(n) that is both simpler and more efficient than

the usual definition (5.2.6).

Although a brute force search requires O(k) loop iterations, the successive quadratic

terms can be generated without multiplications or divisions using two coupled linear

recurrences. This only costs a few processor cycles per loop iteration, which is a sub-

stantial improvement over computing Dedekind sums, and means that the cost up to

fairly large k effectively will be dominated by evaluating O(k1/2) cosines, adding up to

O(n3/4) function evaluations for computing p(n).

Algorithm 5.3.1 Simple algorithm for evaluating Ak(n)

Input: Integers k, n ≥ 0

Output: s = Ak(n), where Ak(n) is defined as in (5.2.6)

1: if k ≤ 1 then return k

2: else if k = 2 then return (−1)n

3: (s, r,m)← (0, 2, (n mod k))

4: for 0 ≤ l < 2k do

5: if m = 0 then

6: s← s+ (−1)l cos (π(6l + 1)/(6k))

7: m← m+ r

8: if m ≥ k then m← m− k ⊲ m← m mod k

9: r ← r + 3

10: if r ≥ k then r ← r − k ⊲ r ← r mod k

11: return (k/3)1/2 s
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A basic implementation of (5.3.1) is given as Algorithm 5.3.1. Here the variable m runs

over the successive values of (3l2 + l)/2, and r runs over the differences between con-

secutive m. Various improvements are possible: a modification of the equation allows

cutting the loop range in half when k is odd, and the number of cosine evaluations can

be reduced by counting the multiplicities of unique angles after reduction to [0, π/4),

evaluating a weighted sum
∑

wi cos(θi) at the end – possibly using trigonometric addi-

tion theorems to exploit the fact that the differences θi+1− θi between successive angles

tend to repeat for many different i.

5.3.2 A fast algorithm

From Selberg’s formula (5.3.1), Whiteman [110] obtained a more efficient but consider-

ably more complicated multiplicative decomposition of Ak(n). The essence of White-

man’s factorization is the following.

Theorem 5.3.1. Ak(n) can be written as
√
a
∏r

i=1 cos(πb) where r = O(log k) and a

and b are rational numbers with O(log n+log k) bits in the numerator and denominator.

Since Whiteman’s factorization only involves O(log k) cosine factors per term in the HRR

series, the total number for p(n) is brought down to O(n1/2 log n). His factorization also

reveals exactly when Ak(n) = 0 (which is about half the time).

We now reproduce the details of Whiteman’s factorization theorem. We omit the proofs,

which are given in full detail in [110].

First consider the case when k is a power of a prime. Clearly A1(n) = 1 and A2(n) =

(−1)n. Otherwise let k = pλ and v = 1−24n. Then, using the notation (a|m) for Jacobi

symbols to avoid confusion with fractions, we have

Ak(n) =



















(−1)λ(−1|m2)k
1/2 sin(4πm2/8k) if p = 2

2(−1)λ+1(m3|3)(k/3)1/2 sin(4πm3/3k) if p = 3

2(3|k)k1/2 cos(4πmp/k) if p > 3

(5.3.2)

where m2, m3 and mp respectively are any solutions of

(3m2)
2 ≡ v mod 8k (5.3.3)

(8m3)
2 ≡ v mod 3k (5.3.4)

(24mp)
2 ≡ v mod k (5.3.5)

provided, when p > 3, that such an mp exists and that gcd(v, k) = 1. If, on the other
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hand, p > 3 and either of these two conditions do not hold, we have

Ak(n) =



















0 if v is not a quadratic residue modulo k

(3|k)k1/2 if v ≡ 0 mod p, λ = 0

0 if v ≡ 0 mod p, λ > 1.

(5.3.6)

If k is not a prime power, assume that k = k1k2 where gcd(k1, k2) = 1. Then we can

factor Ak(n) as Ak(n) = Ak1(n1)Ak2(n2), where n1, n2 are any solutions of the following

equations. If k1 = 2, then







32n2 ≡ 8n+ 1 mod k2

n1 ≡ n− (k22 − 1)/8 mod 2,
(5.3.7)

if k1 = 4, then






128n2 ≡ 8n+ 5 mod k2

k22n1 ≡ n− 2− (k22 − 1)/8 mod 4,
(5.3.8)

and if k1 is odd or divisible by 8, then







k22d2en1 ≡ d2en+ (k22 − 1)/d1 mod k1

k21d1en2 ≡ d1en+ (k21 − 1)/d2 mod k2
(5.3.9)

where d1 = gcd(24, k1), d2 = gcd(24, k2), 24 = d1d2e.

Here (k2 − 1)/d denotes an operation done on integers, rather than a modular division.

All other solving steps in (5.3.2)–(5.3.9) amount to computing greatest common divisors,

carrying out modular ring operations, finding modular inverses, and computing modular

square roots.

Repeated application of these formulas results in Algorithm 5.3.2, where we omit the

detailed arithmetic for brevity.

We now analyze the complexity of Algorithm 5.3.2.

Lemma 5.3.2. Assume that the prime factorization k is given, and that we know a

quadratic nonresidue modulo any prime up to k. Then the exponential sum Ak(n) can

be factored using O(log4+o(1) k) bit operations by use of Algorithm 5.3.2.

Proof. A fixed index k is a product of at most O(log k) prime powers with exponents

bounded by O(log k). For each prime power, Algorithm 5.3.2 performs O(1) operations

on integers with O(log k) bits, where an operation is an addition, multiplication, a

division, a modular inversion, a greatest common divisor, or a Jacobi symbol (which

can all be done with bit complexity O(log1+o(1) k)), or a square root modulo pλ.
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Algorithm 5.3.2 Fast algorithm for evaluating Ak(n)

Input: Integers k ≥ 1, n ≥ 0

Output: s = Ak(n), where Ak(n) is defined as in (5.2.6)

1: Compute the prime factorization k = pλ1

1 pλ2

2 . . . p
λj

j

2: s← 1

3: for 1 ≤ i ≤ j and while s 6= 0 do

4: if i < j then

5: (k1, k2)← (pλi
i , k/pλi

i )

6: Compute n1, n2 by solving the respective case of (5.3.7)–(5.3.9)

7: s← s×Ak1(n1) ⊲ Handle the prime power case using (5.3.2)–(5.3.6)

8: (k, n)← (k2, n2)

9: else

10: s← s×Ak(n) ⊲ Prime power case

11: return s

To compute square roots modulo pλ, we can use the Tonelli-Shanks algorithm [99, 94]

modulo p followed by Hensel lifting up to pλ. Assuming that we know a quadratic

nonresidue modulo p, the Tonelli-Shanks algorithm requires O(log3 k) multiplications in

the worst case and O(log2 k) multiplications on average. Hensel lifting costs O(logo(1) k)

multiplications. We thus perform at most O(log2 k) multiplications for each of the

O(log k) prime powers, each multiplication having bit complexity O(log1+o(1) k).

At first sight, the need for the prime factorization of k might seem to pose a prob-

lem for Algorithm 5.3.2, since no logO(1) k algorithm for integer factorization is known.

More subtly, finding quadratic nonresidues poses a similar difficulty. Fortunately, to

compute p(n), these operations can be batched for all the required indices.

Lemma 5.3.3. We can compute the prime factorizations of all k up to n1/2, and find

a quadratic nonresidue modulo p for all primes p up to n1/2, using O(n1/2 log1+o(1) n)

bit operations.

Proof. Using the sieve of Eratosthenes, we can precompute a list of length n1/2 where

entry k is the largest prime dividing k using O(n1/2 log1+o(1) n) bit operations.

If n2(pk) denotes the least quadratic nonresidue modulo the kth prime number, it is a

theorem of Erdős [37, 89] that as x→∞,

1

π(x)

∑

pk≤x

n2(pk) →
∞
∑

k=1

pk
2k

= C < 3.675. (5.3.10)

Given the primes up to x = n1/2, we can therefore build a table of nonresidues by

testing no more than (C + o(1))π(n1/2) candidates. Since π(n1/2) = O(n1/2/ log n) and
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a quadratic residue test takes O(log1+o(1) p) time, the total precomputation time for

quadratic residues is O(n1/2 logo(1) n).

Combining Lemmas 5.3.2 and 5.3.3 gives the following result.

Theorem 5.3.4. The factorizations of the exponential sums Ak(n) for all k up to

O(n1/2) can computed using a total of O(n1/2 log4+o(1) n) bit operations.

The precomputation of Lemma 5.3.3 is mostly of theoretical interest. In practice, the k

are word-sized and can be factored on the fly in time that is negligible compared to all

the other operations involved in evaluating p(n). Likewise, it is sufficient in practice to

generate nonresidues on the fly since O(1) candidates need to be tested on average, but

we can only prove an O(logc k) bound for factoring an isolated Ak(n) (where the prime

factorization of k also is given) by assuming the Extended Riemann Hypothesis which

gives n2(p) = O(log2 p) [2].

In our original paper [52], we erroneously claimed an O(n1/2 log3+o(1) n) complexity

bound for factoring all the Ak(n). This analysis was based on using Cipolla’s algorithm

[33] which requires O(log2 k) multiplications in the worst case to compute a modular

square root (as discussed in [35], pp. 99–103). However, while the smallest quadratic

nonresidue modulo a given p can be used in Tonelli-Shanks algorithm, Cipolla’s algo-

rithm requires knowing a quadratic nonresidue of special form. The original complexity

bound is still valid as a heuristic estimate, and could possibly be proved rigorously by a

stronger argument.

5.4 Numerical evaluation

To evaluate p(n) using the HRR formula, the following strategy can be used: we first

select N = O(n1/2) such that the remainder satisfies |R(n,N)| < 0.25, and then compute

a floating-point number s = u2v , u, v ∈ Z such that

∣

∣

∣

∣

∣

N
∑

k=1

T (n, k)− s

∣

∣

∣

∣

∣

< 0.25. (5.4.1)

Since |p(n)− s| < 0.5, rounding s to the nearest integer guarantees a correct result.

Clearly, s needs to be computed with a precision of O(n1/2) bits. Even with the aid

of the factorization of the previous section, evaluating all terms to the same precision

would cost O(n1/2) × O(n1/2+o(1)) = O(n1+o(1)) bit operations. The key step to get a

quasioptimal algorithm is to choose a tight working precision for each term.

The bound (5.4.1) holds if each term T (n, k) is approximated with an absolute error of
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O(n1/2)

O(n1/2)
k

lo
g
2
|T

(n
,k
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Figure 5.1: Distribution of the term magnitudes in the Hardy-Ramanujan-Rademacher

series: we need a few terms with high precision and many terms with low precision.

at most 0.125/N and each addition in the main summation is done with an absolute

error of at most 0.125/N .

Since log2 |T (n, k)| = O(n1/2/k + log k), it is sufficient to evaluate T (n, k) from its

factorization using floating-point arithmetic with a precision of log2 |T (n, k)|+O(log n) =

O(n1/2/k+log n) bits, where the extra O(log n) term accounts for intermediate rounding

errors.

A more detailed error analysis, providing an explicit numerical bound for the number

of guard bits under the assumption that the operations are done in a certain order, is

given in our original paper [52].

Up to additional logarithmic factors, the preceding argument shows that the complex-

ity of numerical evaluation required to compute p(n) is the area below the hyperbola

O(n1/2/k) as k goes up to O(n1/2), which amounts to O(n1/2 log n). This is illustrated

in Figure 5.1. If a fixed precision were used for all terms, the complexity would be the

area of the enveloping rectangle.

Stated more precisely, we have the following result:

Theorem 5.4.1. Assume that the factorizations of Ak(n) for all k up to N = O(n1/2)

are given. Then we can compute a floating-point number s such that
∣

∣

∣

∣

∣

N
∑

k=1

T (n, k)− s

∣

∣

∣

∣

∣

< 0.25

using O(n1/2 log4+o(1) n) bit operations.

Proof. By Theorem 5.3.1, each term T (n, k) can be evaluated using O(log k) elementary

operations (arithmetic operations, real exponentials, and real cosines), each of which

needs to be carried out at a precision of O(n1/2/k + log n) bits.
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The elementary functions can be evaluated to a precision of r bits using E(r) ≡
O(M(r) logα r) = O(r log1+α+o(1) r) bit operations, where α = 1 using the arithmetic-

geometric mean iteration and α = 2 using the bit-burst (binary splitting) algorithm.

This estimate assumes that the function argument is bounded. For cos(x) where x =

(p/q)π, we can enforce 0 < x < π/2 by adjusting the integers p and q. For exp(x)

where x = O(n1/2), we can reduce the argument to a standard interval such as (−1, 1)
via exp(x) = exp(x −m log 2)2m where a single floating-point division determines the

integer m. This argument reduction step requires no more than O(log n1/2) = O(log n)

guard bits. Obviously, the constants π and log 2 only need to be computed once.

Numerically evaluating all terms thus costs

B = O





n1/2
∑

k=1

(log k) E(n1/2/k + log n)





bit operations. To clean up the nested logarithms that appear when expanding the E

term, we note that log(n1/2/k + log n) = O(log n1/2) = O(log n). This gives

B = O





n1/2
∑

k=1

(log k) (n1/2/k + log n)(log1+α+o(1) n)





= O(log2+α+o(1) n)





n1/2
∑

k=1

n1/2/k + log n





= O(log2+α+o(1) n) O

(

∫ n1/2

1
n1/2/k + log n dk

)

= O(log2+α+o(1))O(n1/2 log n)

= O(n1/2 log3+α+o(1)).

Finally, we need to compute s =
∑N

k=1 T (n, k). If the terms are added in reverse order

k = N, . . . , 2, 1, then addition k costs O(n1/2/k + log n) bit operations, which adds up

to less than the cost of evaluating all the terms.

The main result (Theorem 5.2.1) now follows from Theorem 5.3.4 and Theorem 5.4.1.

The implementation of additions is a subtle but crucial point. If the additions are done in

forward order, the total complexity would be O(n). We can still get the best complexity

when generating terms in forward order by amortizing the additions: we keep separate

summation variables for the partial sums of terms not exceeding r1, r1/2, r1/4, r1/8, . . .

bits where r1 is the precision of the first term.

Alternatively, if the additions are performed in-place in memory, we can sum in the

forward order and rely on carry propagation terminating in an expected O(1) steps, but
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many implementations of arbitrary-precision floating-point arithmetic do not provide

this optimization.

5.5 Rapid computation of roots of unity

To determine p(n) using the Hardy-Ramanujan-Rademacher formula, we require nu-

merical approximations of a large number of algebraic numbers, namely the special

trigonometric values

αp,q = cos

(

pπ

q

)

where p, q are coprime integers, q > 0, and where we can assume that 0 < p < 2q.

Computing α(p, q) is equivalent to computing the root of unity

βp,q = exp

(

pπi

q

)

since αp,q = Re(βp,q) = (βp,q + βp,q)/2 and βp,q = αp,q ± i
√

1− α2
p,q.

The best way to compute αp,q or βp,q depends on q and the precision. When q is large

and the precision is small (which occurs in the majority of the terms in the HRR series),

a satisfactory algorithm is to just compute a floating-point approximation of x = pπ/q

and then evaluate cos(x) the normal way, for instance using Taylor series (to improve

multi-evaluation speed, precomputed lookup tables and polynomial approximations can

be useful).

When q is small and the precision is large (which occurs in the first few terms of the

HRR series), it is more efficient to exploit the fact that αp,q (or βp,q) is an algebraic

number, meaning that we can find an annihilating polynomial Ap,q ∈ Q[x] such that

Ap,q(αp,q) = 0 (or Bp,q ∈ Q[x] such that Bp,q(βp,q) = 0).

Knowing an annihilating polynomial Ap,q, we can compute a low-precision approxima-

tion x0 of αp,q via the cosine function, and refine it to high precision using the Newton

iteration xk+1 = xk−Ap,q(xk)/A
′
p,q(xk), and analogously for βp,q. The low-precision ap-

proximation only roughly needs to be accurate enough to isolate the desired root from

the other roots of the annihilating polynomial.

If p and q are fixed, computing αp,q or βp,q to a precision of b bits using Newton iteration

costs O(M(b)), provided that the Newton iteration is performed with a precision that

doubles in each iteration. In other words, we gain a factor log b compared to evaluat-

ing the cosine or exponential using the arithmetic-geometric mean, or a factor log2 b

compared to evaluating the cosine or exponential using binary splitting.

Since the complexity grows with q, this trick alone does not appear to give a way to
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reduce the asymptotic complexity for computing p(n), but it does reduce the running

time by a significant factor in practice.

5.5.1 Choice of annihilating polynomial

If we choose to compute βp,q, then Bp,q(x) = xq + (−1)p+1 is a natural choice as an-

nihilating polynomial. This polynomial can be evaluated using O(log q) multiplications

with the binary exponentiation algorithm, so the cost grows quite slowly with q.

We could alternatively use the minimal polynomial of βp,q, which is a cyclotomic poly-

nomial. Although this lowers the polynomial degree, it appears to be less efficient since

sparsity is lost.

Working with βp,q has the drawback that complex arithmetic is more costly than real

arithmetic. If we compute αp,q, a possible choice as annihilating polynomial is the

Chebyshev polynomial Uq−1(x). This polynomial has degree q − 1 and coefficients with

O(q log q) bits, so the cost to evaluate the polynomial in expanded form grows rapidly

with q. However, Uq−1(x) can also be evaluated using O(log q) multiplications with

a binary exponentiation-like scheme based on the composition theorem for Chebyshev

polynomials [65]. This algorithm could be competitive with complex exponentiation for

large q.

Finally, we might take Ap,q to be the minimal polynomial of αp,q. Although this

polynomial is dense, its evaluation can be accelerated using the rectangular Paterson-

Stockmeyer scheme. In fact, since Newton iteration requires the values Ap,q(xk) and

A′
p,q(xk), we can save time by reusing the table of powers of xk for both.

For the range of q and precisions encountered when computing the partition function, we

experimentally tested both the real minimal polynomial and complex exponentiation,

finding the former to be more efficient.

5.5.2 Generating trigonometric minimal polynomials

The minimal polynomial of αp,q (which is a factor of Uq−1(x)) can be generated quite

easily thanks to the results of Watkins and Zeitlin [108]. Let Ψn(x) ∈ Q[x] denote the

monic minimal polynomial of cos(2π/n). It is clear that the monic minimal polynomial

of αp,q equals Ψq(x) if p is even and Ψ2q(x) if p is odd. Watkins and Zeitlin show that

d(n) = degΨn(x) =







1, if n = 1, 2

ϕ(n)/2, if n ≥ 3
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and that the roots (αi)
d(n)
i=1 of Ψn(x) when n ≥ 3 precisely are cos(2πk/n) where 0 ≤

k ≤ ⌊n/2⌋ and gcd(k, n) = 1.

Since 2 cos(2π/n) is an algebraic integer [71], we also note that 2d(n)Ψn(x) ∈ Z[x].

We can therefore construct Ψn(x) efficiently by computing numerical approximations of

(αi)
d(n)
i=1 , expanding 2d(n)

∏d
i=1(x− αi) using binary splitting, and rounding each coeffi-

cient to the nearest integer. Since |αi| ≤ 1, binomial expansion shows that the integer

coefficients are bounded by

2d(n)
(

n

⌊n/2⌋

)

≤ 2d(n)+n,

which allows us to estimate the required numerical precision.

An algebraic method to compute Ψn is also given in [108]. If Tn(x) denotes a Chebyshev

polynomial of the first kind and

F (n) =







2−s (Ts+1(x)− Ts(x)) if n = 2s+ 1 is odd

2−s (Ts+1(x)− Ts−1(x)) if n = 2s is even,

then Ψn(x) =
∏

d|n F (n/d)µ(d). We note that Tn(x) can be generated very cheaply as a

hypergeometric series. In fact, it is more efficient to compute the minimal polynomial of

2 cos(2π/n). Then one computes the corresponding product of the rescaled polynomials

F (n) =







2 (Ts+1(x/2) − Ts(x/2)) if n = 2s+ 1 is odd

2 (Ts+1(x/2) − Ts−1(x/2)) if n = 2s is even.

which are monic and have integer coefficients. In particular, polynomials with integer

coefficients can be used throughout. Experiments suggest that the algebraic method

with integer polynomial arithmetic usually is faster than the numerical binary splitting

algorithm.

5.5.3 Performance evaluation

Figure 5.2 compares the running time of four different algorithms for computing cos(π/q)

at a precision of 105 digits. The first algorithm is to evaluate the cosine function using

the MPFR library (which internally uses the bit-burst binary splitting algorithm at this

precision). The cost is essentially constant, and in fact decreases slightly with larger q

since convergence of the Taylor series becomes more rapid.

The next two algorithms compute a root of the minimal polynomial Ψn(x) using real

Newton iteration. When the polynomial evaluations are done using Horner’s rule, the

cost grows roughly as O(q) (as long as q is much smaller than the precision so that

the coefficients of the minimal polynomial can be considered to have constant bit size).
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Figure 5.2: Time to evaluate cos(π/q) to a precision of 105 digits, shown as a function

of the denominator q, using: (black, top) the MPFR cosine function; (dark gray) real

Newton iteration with the minimal polynomial and Horner’s rule; (light gray) real New-

ton iteration with the minimal polynomial and rectangular splitting; (black, bottom)

complex Newton iteration with the polynomial zq + 1.

This algorithm becomes slower than the MPFR cosine function around q ≈ 200. The

Paterson-Stockmeyer rectangular splitting algorithm is much more efficient, with a cost

growing like O(q1/2) for small q. It becomes slower than the MPFR cosine function only

for q > 1000. The pseudorandom local variation in the running times is explained by

the variation of degΨn (the three visible extra large spikes are runtime noise).

The fourth algorithm, complex Newton iteration, remains faster than direct cosine eval-

uation for q even larger than the previous two algorithms. Up to q ≈ 500, however,

the overhead of the complex arithmetic makes this algorithm slower than the minimal

polynomial algorithm with rectangular splitting. The local variation in the running time

is due to the fact that the cost of computing zq depends on the sparseness of the binary

representation of q (powers of two are cheapest).

As a last remark, we note that the computation of αp,q or βp,q can be optimized for

special values. If q = m × 2k where m is odd, we can apply the trigonometric double-

angle formulas k times to reduce the denominator to m. This reduces the degree of the

minimal polynomial at the expense of performing k square roots. When m = 1, m = 3

or m = 5 (among other values) we can reduce the evaluation entirely to square roots.
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5.6 Implementation

As reported in our original paper [52], we have implemented computation of p(n) via

the Hardy-Ramanujan-Rademacher formula in the FLINT library. Our implementation

uses the MPFR library for high-precision floating-point arithmetic, hardware double-

precision floating-point arithmetic for low-precision numerical evaluation, and FLINT

functions for operations on word-size integers (to factor the Ak(n) sums).

For efficiency, it is crucial to set the numerical precision tightly throughout the algorithm.

It is easy to implement the HRR formula incorrectly. Past versions of both the Pari/GP

and Maple computer algebra systems have computed incorrect values of p(n) for some n

(sequence A110375 in [83] lists n where versions 9.5 to 12 of Maple returns the wrong

result, starting with n = 11269, 11566, . . .).

Based on a detailed (but incomplete) floating-point error analysis, and extensive testing,

we concluded that the implementation in FLINT probably is correct for all n.

We have subsequently written a new implementation as part of the Arb library. This

implementation uses ball arithmetic for all numerical calculations to guarantee that the

final value of p(n) is correct. The Arb implementation is slightly slower for small n

mainly as a result of not using hardware double arithmetic (this optimization could

be re-enabled on platforms where error bounds for the floating-point arithmetic, in

particular the evaluation of transcendental functions, can be guaranteed). For very

large n, the Arb implementation is slightly faster, mainly as a result of improved code

for high-precision roots of unity.

Using a system with an AMD Opteron 6174 processor and 256 GiB RAM, we computed

p(1017), p(1018) and p(1019) with the FLINT implementation. The last computation

took just less than 100 hours and used more than 150 GiB of memory, producing a

result with over 11 billion bits. Some large values of p(n) are listed in Table 5.1.

A comparison of the partition function implementations in several systems is shown

in Figure 5.3. The FLINT and Arb implementations exhibit a time complexity only

slightly higher than O(n1/2), with a comparatively small constant factor. The Sage

implementation written by J. Bober is fairly efficient for small n but has a complexity

closer to O(n), and is limited to arguments n < 232 ≈ 4× 109.

The partition function in Mathematica appears to have complexity slightly higher than

O(n1/2) as well, but consistently runs more than 100 times slower than our implementa-

tion. Based on extrapolation, computing p(1019) would take several years. It is unclear

whether Mathematica is actually using a nearly-optimal algorithm or whether the slow

growth is just the manifestation of various overheads dwarfing the true asymptotic be-

havior. The ratio compared to our implementation appears too large to be explained by
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n Decimal expansion Number of digits Terms Error

1012 6129000962 . . . 6867626906 1,113,996 264,526 2× 10−7

1013 5714414687 . . . 4630811575 3,522,791 787,010 3× 10−8

1014 2750960597 . . . 5564896497 11,140,072 2,350,465 −1× 10−8

1015 1365537729 . . . 3764670692 35,228,031 7,043,140 −3× 10−9

1016 9129131390 . . . 3100706231 111,400,846 21,166,305 −9× 10−10

1017 8291300791 . . . 3197824756 352,280,442 63,775,038 5× 10−10

1018 1478700310 . . . 1701612189 1,114,008,610 192,605,341 4× 10−10

1019 5646928403 . . . 3674631046 3,522,804,578 582,909,398 4× 10−11

Table 5.1: Large values of p(n). The table also lists the number of terms N in the Hardy-

Ramanujan-Rademacher formula used by FLINT (theoretically bounding the error by

0.25) and the difference between the floating-point sum and the rounded integer.

differences in performance of the underlying arithmetic alone; for example, evaluating

the first term in the series for p(1010) to required precision in Mathematica only takes

about one second.

We get one external benchmark from ([14], p. 250), where it is reported that R. Cran-

dall computed p(109) in three seconds on a laptop in December 2008, “using the Hardy-

Ramanujan-Rademacher ‘finite’ series for p(n) along with FFT methods”. Even ac-

counting for possible hardware differences, this appears to be an order of magnitude

slower than our implementation.

In the FLINT and Arb implementations, about 30% to 50% of the total time is spent

evaluating the first term in the Hardy-Ramanujan-Series for large n. Our implemen-

tations are therefore nearly optimal in a practical sense, since the first term in the

Hardy-Ramanujan-Rademacher expansion hardly can be avoided and at most a factor

around two can be gained by improving the tail evaluation.

Naturally, there is some potential to implement a faster version of the exponential func-

tion than the one provided by MPFR, reducing the cost of the first term. Improvements

on the level of bignum multiplication would, on the other hand, presumably have a

comparatively uniform effect.

By similar reasoning, at most a factor two can be gained through parallelization of our

implementation by assigning terms in the Hardy-Ramanujan-Rademacher sum to sep-

arate threads. Further speedup on a multicore system requires parallelized versions of

lower level routines, such as the exponential function or bignum multiplication. For-

tunately, it is likely to be more interesting in practice to be able to evaluate p(n) for

a range of large values than just for a single value, and this task naturally parallelizes

well.
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Figure 5.3: CPU time in seconds for computing p(n) using various implementations.

The graph of t = 10−6n1/2 is included to indicate the slope of an idealized algorithm

satisfying the trivial lower complexity bound Ω(n1/2) (the offset 10−6 is arbitrary).

5.7 Multi-evaluation and congruence generation

One of the central problems concerning the partition function is the distribution of

values of p(n) mod m. In 2000, Ono [85] proved that for every prime m ≥ 5, there exist

infinitely many congruences of the type

p(Ak +B) ≡ 0 mod m (5.7.1)

where A,B are fixed and k ranges over all nonnegative integers. Ono’s proof is noncon-

structive, but Weaver [109] subsequently gave an algorithm for finding congruences of

this type when m ∈ {13, 17, 19, 23, 29, 31}, and used the algorithm to compute 76,065

explicit congruences.

Weaver’s congruences are specified by a tuple (m, ℓ, ε) where ℓ is a prime and ε ∈
{−1, 0, 1}, where we unify the notation by writing (m, ℓ, 0) in place of Weaver’s (m, ℓ).
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Such a tuple corresponds to a family of congruences of the form (5.7.1) with coefficients

A = mℓ4−|ε| (5.7.2)

B =
mℓ3−|ε|α+ 1

24
+mℓ3−|ε|δ, (5.7.3)

where α is the unique solution of mℓ3−|ε|α ≡ −1 mod 24 with 1 ≤ α < 24, and where

0 ≤ δ < ℓ is any solution of







24δ 6≡ −α mod ℓ if ε = 0

(24δ + α | ℓ) = ε if ε = ±1.
(5.7.4)

The free choice of δ gives ℓ− 1 distinct congruences for a given tuple (m, ℓ, ε) if ε = 0,

and (ℓ− 1)/2 congruences if ε = ±1.

5.7.1 Weaver’s algorithm

Weaver’s test for congruence, described by Theorems 7 and 8 in [109], essentially

amounts to a single evaluation of p(n) at a special point n. Namely, for given m, ℓ,

we compute the smallest solutions of δm ≡ 24−1 mod m, rm ≡ −m mod 24, and check

whether p(mrm(ℓ2− 1)/24+ δm) is congruent mod m to one of three values correspond-

ing to the parameter ε ∈ {−1, 0, 1}. We give a compact statement of this procedure as

Algorithm 5.7.1. To find new congruences, we simply perform a brute force search over

a set of candidate primes ℓ, calling Algorithm 5.7.1 repeatedly.

Algorithm 5.7.1 Weaver’s congruence test

Input: A pair of prime numbers 13 ≤ m ≤ 31 and ℓ ≥ 5, m 6= ℓ

Output: (m, ℓ, ε) defining a congruence, and Not-a-congruence otherwise

δm ← 24−1 mod m ⊲ Reduced to 0 ≤ δm < m

rm ← (−m) mod 24 ⊲ Reduced to 0 ≤ m < 24

v ← m−3
2

x← p(δm) ⊲ We have x 6≡ 0 mod m

y ← p
(

m
(

rm(ℓ2 − 1)/24
)

+ δm
)

f ← (3 | ℓ) ((−1)vrm | ℓ) ⊲ Jacobi symbols

t← y + fxℓv−1

if t ≡ ω mod m where ω ∈ {−1, 0, 1} then
return (m, ℓ, ω (3(−1)v | ℓ))

else

return Not-a-congruence
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n Series (Z/13Z) Series (Z) HRR (all) HRR (sparse)

104 0.01 s 0.1 s 1.4 s 0.001 s

105 0.13 s 4.1 s 41 s 0.008 s

106 1.4 s 183 s 1430 s 0.08 s

107 14 s 0.7 s

108 173 s 8 s

109 2507 s 85 s

Table 5.2: Comparison of time needed to compute multiple values of p(n) up to the given

bound, using power series inversion and the Hardy-Ramanujan-Rademacher formula.

The rightmost column gives the time when only computing the subset of terms that are

searched with Weaver’s algorithm in the m = 13 case.

5.7.2 Comparison of algorithms for multi-evaluation

A timing comparison between various methods for multi-evaluation of p(n) is shown

in Table 5.2. Power series division, which we implemented using FLINT over both Z

and Z/mZ, is clearly the best choice for computing all values up to n modulo a fixed

prime, having a complexity of O(n1+o(1)). For computing the full integer values, the

power series and HRR methods both have complexity O(n3/2+o(1)), with the power

series method expectedly winning.

Ignoring logarithmic factors, we can expect the HRR formula to be better than the

power series for multi-evaluation of p(n) up to some bound n when n/c values are

needed. The factor c ≈ 10 in the FLINT implementation is a remarkable improvement

over c ≈ 1000 attainable with previous implementations of the partition function. For

evaluation mod m, the HRR formula is competitive when O(n1/2) values are needed; in

this case, the constant is highly sensitive to m.

For the sparse subset of O(n1/2) terms searched with Weaver’s algorithm, the HRR

formula has the same complexity as the modular power series method, but as seen in

Table 5.2 runs more than an order of magnitude faster. On top of this, it has the

advantage of parallelizing trivially, being resumable from any point, and requiring very

little memory (the power series evaluation mod m = 13 up to n = 109 required over

40 GiB memory, compared to a few megabytes with the HRR formula). The recursive

version of Euler’s pentagonal number theorem is, of course, also resumable from an

arbitrary point, but this requires computing and storing all previous values.

We mention that the authors of [80] use a parallel version of the recursive Euler method.

This is not as efficient as power series inversion, but allows the computation to be split

across multiple processors more easily.
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m (m, ℓ, 0) (m, ℓ,+1) (m, ℓ,−1) Congruences CPU Max n

13 6,189 6,000 6,132 5,857,728,831 448 h 5.9× 1012

17 4,611 4,611 4,615 4,443,031,844 391 h 4.9× 1012

19 4,114 4,153 4,152 3,966,125,921 370 h 3.9× 1012

23 3,354 3,342 3,461 3,241,703,585 125 h 9.5× 1011

29 2,680 2,777 2,734 2,629,279,740 1,155 h 2.2× 1013

31 2,428 2,484 2,522 2,336,738,093 972 h 2.1× 1013

All 23,376 23,367 23,616 22,474,608,014 3,461 h

Table 5.3: The number of tuples of the given type with ℓ < 106, the total number of

congruences defined by these tuples, the total CPU time, and the approximate bound

up to which p(n) was evaluated.

5.7.3 Results

Weaver gives 167 tuples, or 76,065 congruences, containing all ℓ up to approximately

1,000–3,000 (depending on m). This table was generated by computing all values of p(n)

with n < 7.5×106 using the recursive version of Euler’s pentagonal theorem. Computing

Weaver’s table from scratch with our implementation of the HRR formula, evaluating

only the necessary n, takes just a few seconds. We are also able to numerically verify

instances of all entries in Weaver’s table for small k.

As a more substantial exercise, we extend Weaver’s table by determing all ℓ up to 106

for each prime m. Statistics are listed in Table 5.3. The computation was performed

using the FLINT partition function by assigning subsets of the search space to separate

processes, running on between 40 and 48 active cores for a period of four days, evaluating

p(n) at 6(π(106)− 3) = 470, 970 distinct n ranging up to 2× 1013.

We find a total of 70,359 tuples, corresponding to slightly more than 2.2 × 1010 new

congruences. To pick an arbitrary, concrete example, one “small” new congruence is

(13, 3797,−1) with δ = 2588, giving

p(711647853449k + 485138482133) ≡ 0 mod 13

which we easily evaluate for all k ≤ 100, providing a sanity check on the identity as

well as the partition function implementation. As a larger example, (29, 999959, 0) with

δ = 999958 gives

p(28995244292486005245947069k + 28995221336976431135321047) ≡ 0 mod 29

which, despite our efforts, presently is out of reach for direct evaluation.
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5.8 Remarks

The techniques we have presented could potentially be applied to other HRR-type series,

such as the formula for the number of partitions into distinct parts

Q(n) =
π2
√
2

24

∞
∑

k=1

Ã2k−1(n)

(1− 2k)2
0F1

(

2,
(n+ 1

24 )π
2

12(1 − 2k)2

)

. (5.8.1)

However, the exponential sum Ã2k−1(n) appearing here is not the same as the expo-

nential sum for the ordinary partition function, and it is not obvious that a similar

factorization exists.

It remains an open problem to find a fast way to compute the isolated value p(n) using

purely algebraic methods. The recent discovery of an “algebraic formula” for p(n) by

Bruinier and Ono [28] could perhaps lead to such an algorithm. An effort in this direction

is made by Bruiner, Ono and Sutherland in the paper [29].
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Appendix A

Implementations

The Fast Library for Number Theory (FLINT) [47] is a C library for computational

number theory, with emphasis on fast arithmetic in various base rings. In particular,

FLINT provides asymptotically fast polynomial arithmetic in Z[x], Q[x] and (Z/nZ)[x].

Polynomial multiplication uses a Schönhage-Strassen FFT implementation by William

Hart. The underlying integer arithmetic is handled by GMP [41] or MPIR [79].

FLINT was initially developed around 2007 by William Hart and David Harvey. The

library was later rewritten from scratch and substantially extended by Hart, Sebastian

Pancratz, and the present author (whose contributions include many of the methods

for power series and linear algebra). Several other authors have also contributed to the

project.

For the computations over R and C described in this thesis, the author developed the

Arb library [53] as an extension of the FLINT project. Both FLINT and Arb are free

software, available under version 2 or later of the GNU General Public License. Comple-

mentary to this thesis which describes the mathematical and algorithmic background,

the Arb library comes with extensive documentation (114 pages in printable format as

of Arb version 1.0.0) describing the interface and implementation-level details.

Arb uses ball arithmetic [103] (or mid-rad interval arithmetic) to do numerical computa-

tions with rigorous propagation of error bounds. In contrast to endpoint-based interval

arithmetic, this representation has negligible space and time overhead at high precision.

The fmprb t type represents a real ball as a pair of floating-point numbers of type

fmpr t. Unlike some other implementations of arbitrary-precision floating-point arith-

metic, the fmpr t type allocates space for the mantissa dynamically, instead of zero-

padding up to the working precision. This feature is especially convenient for binary

splitting, where full-precision numbers are grown gradually from smaller integers.
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Evaluation of elementary functions uses correctly-rounded floating-point functions pro-

vided by the MPFR library [40], along with error propagation based on derivatives. In

some cases, custom implementations are used to improve performance. For instance,

constants such as π and log 2 are computed using binary splitting code which works for

generic hypergeometric series and automatically computes error bounds. Higher tran-

scendental functions (including the gamma and zeta functions) are implemented using

algorithms described in this thesis.

The fmpcb t type represents complex numbers in Cartesian form as pairs of fmprb t

values. Thus complex numbers are not strictly speaking represented as “complex balls”

but as rectangular boxes. Similarly, the fmprb poly t and fmpcb poly t types represent

polynomials (or power series) over the real or complex numbers, and the fmprb mat t

and fmpcb mat t types represent matrices, implemented as arrays of fmprb t or fmpcb t

coefficients. This representation is sometimes less efficient than using complex, polyno-

mial or matricial balls with a single common error bound (tradeoffs are discussed in

[103]), but we generally prefer it since it often is convenient to track error bounds accu-

rately for individual coefficients.

Fast and numerically stable multiplication in R[x] and C[x] is implemented by breaking

polynomials into segments with similarly-sized coefficients and using FLINT to compute

the subproducts exactly in Z[x] (a simplified version of van der Hoeven’s block multi-

plication algorithm [102]). Asymptotically fast polynomial and power series division

is implemented using Newton iteration. Elementary functions of power series switch

between basecase algorithms and asymptotically fast Newton-based algorithms.

Higher-level features provided in the Arb library include isolation and high-precision

polishing of roots of real analytic functions, isolation of complex roots of polynomials,

and numerical integration of complex-valued functions using Taylor series (all operations

are done with rigorous error bounds).

The following C program demonstrates use of the Arb library. It exactly computes the

Bell number Bn by numerically calculating the series expansion of exp(exp(x) − 1) =
∑∞

n=0Bnx
n/n! to order O(xn+1) and reading off the last coefficient.

At too low precision, rounding a floating-point approximation of Bn to the nearest inte-

ger would give the wrong result. The program therefore doubles the working precision

until the ball for Bn contains a single integer, which necessarily must be the correct one.

With a simple modification, the program could output all the numbers B0, . . . , Bn−1 at

no significant extra cost. It could also be modified to output numerical approximations

accurate to a requested number of digits, rather than the exact values.
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#include "fmprb_poly .h"

int main ()

{

fmprb_poly_t f;

fmprb_t t, u;

fmpz_t z;

long i, prec , n = 1000;

fmprb_poly_init (f);

fmprb_init (t);

fmprb_init (u);

fmpz_init (z);

for (prec = 100; ; prec *= 2)

{

fmprb_poly_zero (f);

fmprb_poly_set_coeff_si(f, 1, 1); /* f = x */

fmprb_poly_exp_series (f, f, n + 1, prec ); /* f = e^x */

fmprb_poly_set_coeff_si(f, 0, 0); /* f = e^x - 1 */

fmprb_poly_exp_series (f, f, n + 1, prec ); /* f = e^(e^x -1) */

fmprb_poly_get_coeff_fmprb(t, f, n); /* t = B_n / n! */

fmprb_fac_ui (u, n, prec );

fmprb_mul (t, t, u, prec ); /* t = B_n */

fmprb_printd (t, 15); printf("\n");

if (fmprb_get_unique_fmpz (z, t)) /* we get the right integer */

break;

}

fmpz_print (z); printf("\n");

fmprb_poly_clear (f);

fmprb_clear (t);

fmprb_clear (u);

fmpz_clear (z);

}
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[105] L. Vepštas. An efficient algorithm for accelerating the convergence of oscillatory

series, useful for computing the polylogarithm and Hurwitz zeta functions. Nu-

merical Algorithms, 47(3):211–252, 2008.

[106] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain

difference equations. In Proceedings of ISSAC’97, pages 40–47, 1997.

[107] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-

versity Press, 2nd edition, 2003.

[108] W. Watkins and J. Zeitlin. The minimal polynomial of cos(2π/n). The American

Mathematical Monthly, 100(5):471–474, 1993.

[109] R. Weaver. New congruences for the partition function. The Ramanujan Journal,

5:53–63, 2001.

[110] A. L. Whiteman. A sum connected with the series for the partition function.

Pacific Journal of Mathematics, 6(1):159–176, 1956.

[111] Wofram Research. Some notes on internal implementation (section of the on-

line documentation for Mathematica 9.0). http://reference.wolfram.com/

mathematica/tutorial/SomeNotesOnInternalImplementation.html, 2013.

104

http://www.sagemath.org
http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://cs.berkeley.edu/~virgi/matrixmult.pdf
http://cs.berkeley.edu/~virgi/matrixmult.pdf
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html


[112] M. Ziegler. Fast (multi-)evaluation of linearly recurrent sequences: Improvements

and applications. 2005. http://arxiv.org/abs/cs/0511033.

105

http://arxiv.org/abs/cs/0511033


106



Eidesstattliche Erklärung
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