fexpr_builtin.h – builtin symbols¶
This module defines symbol names with a predefined meaning for use in symbolic expressions. These symbols will eventually all support LaTeX rendering as well as symbolic and numerical evaluation (where applicable).
By convention, all builtin symbol names are at least two characters long and start with an uppercase letter. Single-letter symbol names and symbol names beginning with a lowercase letter are reserved for variables.
For any builtin symbol name Symbol
, the header file
fexpr_builtin.h
defines a C constant FEXPR_Symbol
as an
index to a builtin symbol table.
The symbol will be documented as Symbol
below.
C helper functions¶
-
slong
fexpr_builtin_lookup
(const char *s)¶ Returns the internal index used to encode the builtin symbol with name s in expressions. If s is not the name of a builtin symbol, returns -1.
Variables and iteration¶
Expressions involving the following symbols have a special role in binding variables.
-
For
¶ Generator expression. This is a syntactical construct which does not represent a mathematical object on its own. In general,
For(x, ...)
defines the symbolx
as a locally bound variable in the scope of the parent expression. The following arguments...
specify an evaluation range, set or point. Their interpretation depends on the parent operator. The following cases are possible.Case 1:
For(x, S)
specifies iteration or comprehension forx
ranging over the values of the setS
. This interpretation is used in operators that aggregate values over a set. TheFor
expression may be followed by a filter predicateP(x)
restricting the range to a subset ofS
. Examples:Set(f(x), For(x, S))
denotes \(\{f(x) : x \in S\}\).Set(f(x), For(x, S), P(x))
denotes \(\{f(x) : x \in S \operatorname{and} P(x)\}\).Sum(f(x), For(x, S))
denotes \(\sum_{x \in S} f(x)\).Sum(f(x), For(x, S), P(x))
denotes \(\sum_{x \in S, \, P(x)} f(x)\).Case 2:
For(x, a, b)
specifies thatx
ranges between the endpointsa
andb
in the context ofSum
,Product
,Integral
, and similar operators. Examples:Sum(f(n), For(n, a, b))
denotes \(\sum_{n=a}^b f(n)\). The iteration is empty if \(b < a\).Integral(f(x), For(x, a, b))
denotes \(\int_a^b f(x) dx\), where the integral follows a straight-line path from a to b. Swapping a and b negates the value.Case 3:
For(x, a)
specifies thatx
approaches the pointa
in the context ofLimit
-type operator, or differentiation with respect tox
at the pointa
in the context of aDerivative
-type operator. Examples:Derivative(f(x), For(x, a))
denotes \(f'(a)\).Limit(f(x), For(x, a))
denotes \(\lim_{x \to a} f(x)\).Case 4:
For(x, a, n)
specifies differentiation with respect tox
at the pointa
to ordern
in the context of aDerivative
-type operator. Examples:Derivative(f(x), For(x, a, n))
denotes \(f^{(n)}(a)\).
-
Where
¶ Where(f(x), Def(x, a))
defines the symbolx
as an alias for the expressiona
and evaluates the expressionf(x)
with this bound value ofx
. This is equivalent tof(a)
. This may be rendered as \(f(x) \; \operatorname{where} x = a\).Where(f(x), Def(f(t), a))
defines the symbolf
as a function mapping the dummy variablet
toa
.Where(Add(a, b), Def(Tuple(a, b), T))
is a destructuring assignment.
-
Def
¶ Definition expression. This is a syntactical construct which does not represent a mathematical object on its own. The
Def
expression is used only within aWhere
-expression; see that documentation of that symbol for more examples.Def(x, a)
defines the symbolx
as an alias for the expressiona
.Def(f(x, y, z), a)
defines the symbolf
as a function of three variables. The dummy variablesx
,y
andz
may appear within the expressiona
.
-
Fun
¶ Fun(x, expr)
defines an anonymous univariate function mapping the symbolx
to the expressionexpr
. The symbolx
becomes locally bound within thisFun
expression.
-
Step
¶
-
Repeat
¶
Booleans and logic¶
-
Equal
¶ Equal(a, b)
, signifying \(a = b\), isTrue
ifa
andb
represent the same object, andFalse
otherwise. This operator can be called with any number of arguments, in which case it evaluates whether all arguments are equal.
-
NotEqual
¶ NotEqual(a, b)
, signifying \(a \ne b\), is equivalent toNot(Equal(a, b))
.
-
Same
¶ Same(a, b)
givesa
(or equivalentlyb
) ifa
andb
represent the same object, andUndefined
otherwise. This can be used to assert or emphasize that two expressions represent the same value within a formula. This operator can be called with any number of arguments, in which case it asserts that all arguments are equal.
-
True
¶ True
is a logical constant.
-
False
¶ False
is a logical constant.
-
Not
¶ Not(x)
is the logical negation ofx
.
-
And
¶ And(x, y)
is the logical AND ofx
andy
. This function can be called with any number of arguments.
-
Or
¶ Or(x, y)
is the logical OR ofx
andy
. This function can be called with any number of arguments.
-
Equivalent
¶ Equivalent(x, y)
denotes the logical equivalence \(x \Leftrightarrow y\). Semantically, this is the same asEqual
called with logical arguments.
-
Implies
¶ Implies(x, y)
denotes the logical implication \(x \implies y\).
-
Exists
¶ Existence quantifier.
Exists(f(x), For(x, S))
denotes \(f(x) \;\text{ for some } x \in S\).Exists(f(x), For(x, S), P(x))
denotes \(f(x) \;\text{ for some } x \in S \text{ with } P(x)\).
-
All
¶ Universal quantifier.
All(f(x), For(x, S))
denotes \(f(x) \;\text{ for all } x \in S\).All(f(x), For(x, S), P(x))
denotes \(f(x) \;\text{ for all } x \in S \text{ with } P(x)\).
-
Cases
¶ Cases(Case(f(x), P(x)), Case(g(x), Otherwise))
denotes:\[\begin{split}\begin{cases} f(x), & P(x)\\g(x), & \text{otherwise}\\ \end{cases}\end{split}\]Cases(Case(f(x), P(x)), Case(g(x), Q(x)), Case(h(x), Otherwise))
denotes:\[\begin{split}\begin{cases} f(x), & P(x)\\g(x), & Q(x)\\h(x), & \text{otherwise}\\ \end{cases}\end{split}\]If both \(P(x)\) and \(Q(x)\) are true simultaneously, no ordering is implied; it is assumed that \(f(x)\) and \(g(x)\) give the same value for any such \(x\). More generally, this operator can be called with any number of case distinctions.
If the Otherwise case is omitted, the result is undefined if neither predicate is true.
-
Case
¶ See
Cases
.
-
Otherwise
¶ See
Cases
.
Tuples, lists and sets¶
-
Tuple
¶
-
List
¶
-
Set
¶
-
Item
¶
-
Element
¶
-
NotElement
¶
-
EqualAndElement
¶
-
Length
¶
-
Cardinality
¶
-
Concatenation
¶
-
Union
¶
-
Intersection
¶
-
SetMinus
¶
-
Subset
¶
-
SubsetEqual
¶
-
CartesianProduct
¶
-
CartesianPower
¶
-
Subsets
¶ Subsets(S)
is the power set \(\mathscr{P}(S)\) comprising all subsets of the setS
.
-
Sets
¶ Sets
is the class \(\operatorname{Sets}\) of all sets.
-
Tuples
¶ Tuples
is the class of all tuples.Tuples(S)
is the set of all tuples with elements in the setS
.Tuples(S, n)
is the set of all length-n
tuples with elements in the setS
.
Numbers and arithmetic¶
Particular numbers¶
-
Pi
¶ Pi
is the constant \(\pi\).
-
NumberI
¶ NumberI
is the imaginary unit \(i\). The verbose name leavesi
andI
to be used as a variable names.
-
NumberE
¶ NumberE
is the base of the natural logarithm \(e\). The verbose name leavese
andE
to be used as a variable names.
-
GoldenRatio
¶ GoldenRatio
is the golden ratio \(\varphi\).
-
Euler
¶ Euler
is Euler’s constant \(\gamma\).
-
CatalanConstant
¶ CatalanConstant
is Catalan’s constant \(G\).
-
KhinchinConstant
¶ KhinchinConstant
is Khinchin’s constant \(K\).
-
GlaisherConstant
¶ GlaisherConstant
is Glaisher’s constant \(A\).
-
RootOfUnity
¶ RootOfUnity(n)
is the principal complex n-th root of unity \(\zeta_n = e^{2 \pi i / n}\).RootOfUnity(n, k)
is the complex n-th root of unity \(\zeta_n^k\).
Number constructors¶
Remark: the rational number with numerator p and denominator q
can be constructed as Div(p, q)
.
-
Decimal
¶ Decimal(str)
gives the rational number specified by the string str in ordinary decimal floating-point notation (for example-3.25e-725
).
-
AlgebraicNumberSerialized
¶
-
PolynomialRootIndexed
¶
-
PolynomialRootNearest
¶
-
Enclosure
¶
-
Approximation
¶
-
Guess
¶
-
Unknown
¶
Sets of numbers¶
-
NN
¶ NN
is the set of natural numbers (including 0), \(\mathbb{N}\).
-
ZZ
¶ ZZ
is the set of integers, \(\mathbb{Z}\).
-
QQ
¶ QQ
is the set of rational numbers, \(\mathbb{Q}\).
-
RR
¶ RR
is the set of real numbers, \(\mathbb{R}\).
-
CC
¶ CC
is the set of complex numbers, \(\mathbb{C}\).
-
Primes
¶ Primes
is the set of positive prime numbers, \(\mathbb{P}\)
-
IntegersGreaterEqual
¶ IntegersGreaterEqual(x)
, given an extended real number x, gives the set \(\mathbb{Z}_{\ge x}\) of integers greater than or equal to x.
-
IntegersLessEqual
¶ IntegersLessEqual(x)
, given an extended real number x, gives the set \(\mathbb{Z}_{\le x}\) of integers less than or equal to x.
-
Range
¶ Range(a, b)
, given integers a and b, gives the set \(\{a, a+1, \ldots, b\}\) of integers between a and b. This is the empty set if a is greater than b.
-
AlgebraicNumbers
¶ The set of complex algebraic numbers \(\overline{\mathbb{Q}}\).
-
RealAlgebraicNumbers
¶ The set of real algebraic numbers \(\overline{\mathbb{Q}}_{\mathbb{R}}\).
-
Interval
¶ Interval(a, b)
, given extended real numbers a and b, gives the closed interval \([a, b]\).
-
OpenInterval
¶ OpenInterval(a, b)
, given extended real numbers a and b, gives the open interval \((a, b)\).
-
ClosedOpenInterval
¶ ClosedOpenInterval(a, b)
, given extended real numbers a and b, gives the closed-open interval \([a, b)\).
-
OpenClosedInterval
¶ OpenClosedInterval(a, b)
, given extended real numbers a and b, gives the closed-open interval \((a, b]\).
-
RealBall
¶ RealBall(m, r)
, given a real number m and an extended real number r, gives the the closed real ball \([m \pm r]\) with center m and radius r.
-
OpenRealBall
¶ OpenRealBall(m, r)
, given a real number m and an extended real number r, gives the the open real ball \((m \pm r)\) with center m and radius r.
-
OpenComplexDisk
¶ OpenComplexDisk(m, r)
, given a complex number m and an extended real number r, gives the open complex disk \(D(m, r)\) with center m and radius r.
-
ClosedComplexDisk
¶ ClosedComplexDisk(m, r)
, given a complex number m and a real number r, gives the closed complex disk \(\overline{D}(m, r)\) with center m and radius r.
-
UpperHalfPlane
¶ UpperHalfPlane
is the set \(\mathbb{H}\) of complex numbers with positive imaginary part.
-
UnitCircle
¶
-
BernsteinEllipse
¶
-
Lattice
¶
Infinities and extended numbers¶
-
Infinity
¶ Infinity
is the positive signed infinity \(\infty\).
-
UnsignedInfinity
¶ UnsignedInfinity
is the unsigned infinity \(\tilde \infty\).
-
RealSignedInfinities
¶ RealSignedInfinities
is the set of real signed infinities \(\{+\infty, -\infty\}\).
-
ComplexSignedInfinities
¶ ComplexSignedInfinities
is the set of complex signed infinities \(\{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\}\).
-
RealInfinities
¶ RealInfinities
is the set of real infinities (signed and unsigned) \(\{+\infty, -\infty\} \cup \{\tilde \infty\}\).
-
ComplexInfinities
¶ ComplexInfinities
is the set of complex infinities (signed and unsigned) \(\{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\} \cup \{\tilde \infty\}\).
-
ExtendedRealNumbers
¶ ExtendedRealNumbers
is the set of extended real numbers \(\mathbb{R} \cup \{+\infty, -\infty\}\).
-
ProjectiveRealNumbers
¶ ProjectiveRealNumbers
is the set of projectively extended real numbers \(\mathbb{R} \cup \{\tilde \infty\}\).
-
SignExtendedComplexNumbers
¶ SignExtendedComplexNumbers
is the set of complex numbers extended with signed infinities \(\mathbb{C} \cup \{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\}\).
-
ProjectiveComplexNumbers
¶ ProjectiveComplexNumbers
is the set of projectively extended complex numbers (also known as the Riemann sphere) \(\mathbb{C} \cup \{\tilde \infty\}\).
-
RealSingularityClosure
¶ RealSingularityClosure
is the Calcium singularity closure for real functions, encompassing real numbers, signed infinities, unsigned infinity, and undefined (u). This set is defined as \(\mathbb{R}_{\text{Sing}} = \mathbb{R} \cup \{+\infty, -\infty\} \cup \{\tilde \infty\} \cup \{ \mathfrak{u} \}\).
-
ComplexSingularityClosure
¶ ComplexSingularityClosure
is the Calcium singularity closure for complex functions, encompassing complex numbers, signed infinities, unsigned infinity, and undefined (u). This set is defined as \(\mathbb{C}_{\text{Sing}} = \mathbb{C} \cup \{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\} \cup \{\tilde \infty\} \cup \{ \mathfrak{u} \}\).
Operators and calculus¶
Limits¶
-
Limit
¶
-
SequenceLimit
¶
-
RealLimit
¶
-
LeftLimit
¶
-
RightLimit
¶
-
ComplexLimit
¶
-
MeromorphicLimit
¶
-
SequenceLimitInferior
¶
-
SequenceLimitSuperior
¶
-
AsymptoticTo
¶
Matrices and linear algebra¶
-
Matrix
¶
-
Row
¶
-
Column
¶
-
RowMatrix
¶
-
ColumnMatrix
¶
-
DiagonalMatrix
¶
-
Matrix2x2
¶
-
ZeroMatrix
¶
-
IdentityMatrix
¶
-
Det
¶
-
Spectrum
¶
-
SingularValues
¶
-
Matrices
¶
-
SL2Z
¶
-
PSL2Z
¶
-
SpecialLinearGroup
¶
-
GeneralLinearGroup
¶
-
HilbertMatrix
¶
Polynomials, series and rings¶
-
Pol
¶
-
Ser
¶
-
Polynomial
¶
-
Coefficient
¶
-
PolynomialDegree
¶
-
Polynomials
¶
-
PolynomialFractions
¶
-
FormalPowerSeries
¶
-
FormalLaurentSeries
¶
-
FormalPuiseuxSeries
¶
-
Zero
¶
-
One
¶
-
Characteristic
¶
-
Rings
¶
-
CommutativeRings
¶
-
Fields
¶
-
QuotientRing
¶
-
FiniteField
¶
-
EqualQSeriesEllipsis
¶
-
IndefiniteIntegralEqual
¶
-
QSeriesCoefficient
¶
-
Call
¶
-
CallIndeterminate
¶
Special functions¶
Number parts and step functions¶
-
Abs
¶
-
Sign
¶
-
Re
¶
-
Im
¶
-
Arg
¶
-
Conjugate
¶
-
Csgn
¶
-
RealAbs
¶
-
Max
¶
-
Min
¶
-
Floor
¶
-
Ceil
¶
-
KroneckerDelta
¶
Primes and divisibility¶
-
IsOdd
¶
-
IsEven
¶
-
CongruentMod
¶
-
Divides
¶
-
Mod
¶
-
GCD
¶
-
LCM
¶
-
XGCD
¶
-
IsPrime
¶
-
Prime
¶
-
PrimePi
¶
-
DivisorSigma
¶
-
MoebiusMu
¶
-
EulerPhi
¶
-
DiscreteLog
¶
-
LegendreSymbol
¶
-
JacobiSymbol
¶
-
KroneckerSymbol
¶
-
SquaresR
¶
-
LiouvilleLambda
¶
Elementary functions¶
-
Exp
¶
-
Log
¶
-
Sin
¶
-
Cos
¶
-
Tan
¶
-
Cot
¶
-
Sec
¶
-
Csc
¶
-
Sinh
¶
-
Cosh
¶
-
Tanh
¶
-
Coth
¶
-
Sech
¶
-
Csch
¶
-
Asin
¶
-
Acos
¶
-
Atan
¶
-
Acot
¶
-
Asec
¶
-
Acsc
¶
-
Asinh
¶
-
Acosh
¶
-
Atanh
¶
-
Acoth
¶
-
Asech
¶
-
Acsch
¶
-
Atan2
¶
-
Sinc
¶
-
LambertW
¶
Combinatorial functions¶
-
SloaneA
¶
-
SymmetricPolynomial
¶
-
Cyclotomic
¶
-
Fibonacci
¶
-
BernoulliB
¶
-
BernoulliPolynomial
¶
-
StirlingCycle
¶
-
StirlingS1
¶
-
StirlingS2
¶
-
EulerE
¶
-
EulerPolynomial
¶
-
BellNumber
¶
-
PartitionsP
¶
-
LandauG
¶
Gamma function and factorials¶
-
Factorial
¶
-
Binomial
¶
-
Gamma
¶
-
LogGamma
¶
-
DoubleFactorial
¶
-
RisingFactorial
¶
-
FallingFactorial
¶
-
HarmonicNumber
¶
-
DigammaFunction
¶
-
DigammaFunctionZero
¶
-
BetaFunction
¶
-
BarnesG
¶
-
LogBarnesG
¶
-
StirlingSeriesRemainder
¶
-
LogBarnesGRemainder
¶
Orthogonal polynomials¶
-
ChebyshevT
¶
-
ChebyshevU
¶
-
LegendreP
¶
-
JacobiP
¶
-
HermiteH
¶
-
LaguerreL
¶
-
GegenbauerC
¶
-
SphericalHarmonicY
¶
-
LegendrePolynomialZero
¶
-
GaussLegendreWeight
¶
Exponential integrals¶
-
Erf
¶
-
Erfc
¶
-
Erfi
¶
-
UpperGamma
¶
-
LowerGamma
¶
-
IncompleteBeta
¶
-
IncompleteBetaRegularized
¶
-
LogIntegral
¶
-
ExpIntegralE
¶
-
ExpIntegralEi
¶
-
SinIntegral
¶
-
SinhIntegral
¶
-
CosIntegral
¶
-
CoshIntegral
¶
-
FresnelC
¶
-
FresnelS
¶
Bessel and Airy functions¶
-
AiryAi
¶
-
AiryBi
¶
-
AiryAiZero
¶
-
AiryBiZero
¶
-
BesselJ
¶
-
BesselI
¶
-
BesselY
¶
-
BesselK
¶
-
HankelH1
¶
-
HankelH2
¶
-
BesselJZero
¶
-
BesselYZero
¶
-
CoulombF
¶
-
CoulombG
¶
-
CoulombH
¶
-
CoulombC
¶
-
CoulombSigma
¶
Hypergeometric functions¶
-
Hypergeometric0F1
¶
-
Hypergeometric1F1
¶
-
Hypergeometric1F2
¶
-
Hypergeometric2F1
¶
-
Hypergeometric2F2
¶
-
Hypergeometric2F0
¶
-
Hypergeometric3F2
¶
-
HypergeometricU
¶
-
HypergeometricUStar
¶
-
HypergeometricUStarRemainder
¶
-
Hypergeometric0F1Regularized
¶
-
Hypergeometric1F1Regularized
¶
-
Hypergeometric1F2Regularized
¶
-
Hypergeometric2F1Regularized
¶
-
Hypergeometric2F2Regularized
¶
-
Hypergeometric3F2Regularized
¶
Zeta and L-functions¶
-
RiemannZeta
¶
-
RiemannZetaZero
¶
-
RiemannHypothesis
¶
-
RiemannXi
¶
-
HurwitzZeta
¶
-
LerchPhi
¶
-
PolyLog
¶
-
MultiZetaValue
¶
-
DirichletL
¶
-
DirichletLZero
¶
-
DirichletLambda
¶
-
DirichletCharacter
¶
-
DirichletGroup
¶
-
PrimitiveDirichletCharacters
¶
-
GeneralizedRiemannHypothesis
¶
-
ConreyGenerator
¶
-
GeneralizedBernoulliB
¶
-
StieltjesGamma
¶
-
KeiperLiLambda
¶
-
GaussSum
¶
Elliptic integrals¶
-
AGM
¶
-
AGMSequence
¶
-
EllipticK
¶
-
EllipticE
¶
-
EllipticPi
¶
-
IncompleteEllipticF
¶
-
IncompleteEllipticE
¶
-
IncompleteEllipticPi
¶
-
CarlsonRF
¶
-
CarlsonRG
¶
-
CarlsonRJ
¶
-
CarlsonRD
¶
-
CarlsonRC
¶
-
CarlsonHypergeometricR
¶
-
CarlsonHypergeometricT
¶
Elliptic, theta and modular functions¶
-
JacobiTheta
¶
-
JacobiThetaQ
¶
-
DedekindEta
¶
-
ModularJ
¶
-
ModularLambda
¶
-
EisensteinG
¶
-
EisensteinE
¶
-
DedekindSum
¶
-
WeierstrassP
¶
-
WeierstrassZeta
¶
-
WeierstrassSigma
¶
-
EllipticRootE
¶
-
HilbertClassPolynomial
¶
-
EulerQSeries
¶
-
DedekindEtaEpsilon
¶
-
ModularGroupAction
¶
-
ModularGroupFundamentalDomain
¶
-
ModularLambdaFundamentalDomain
¶
-
PrimitiveReducedPositiveIntegralBinaryQuadraticForms
¶
-
JacobiThetaEpsilon
¶
-
JacobiThetaPermutation
¶
Nonsemantic markup¶
-
Ellipsis
¶ Ellipsis
renders as \(\ldots\) in LaTeX. It can be used to indicate missing function arguments for display purposes, but it has no predefined builtin semantics.
-
Parentheses
¶ Parentheses(x)
semantically representsx
, but renders with parentheses (\(\left(x\right)\)) when converted to LaTeX.
-
Brackets
¶ Brackets(x)
semantically representsx
, but renders with brackets (\(\left[x\right]\)) when converted to LaTeX.
-
Braces
¶ Braces(x)
semantically representsx
, but renders with braces (\(\left\{x\right\}\)) when converted to LaTeX.
-
AngleBrackets
¶ AngleBrackets(x)
semantically representsx
, but renders with angle brackets (\(\left\langle x\right\rangle\)) when converted to LaTeX.
-
Logic
¶ Logic(x)
semantically representsx
, but forces logical expressions within x to be rendered using symbols instead of text.
-
ShowExpandedNormalForm
¶ ShowExpandedNormalForm(x)
semantically representsx
, but displays the expanded normal form of the expression instead of rendering the expression verbatim. Warning: this triggers a nontrivial (potentially very expensive) computation.
-
Subscript
¶