gr_mat.h – dense matrices over generic rings¶
A gr_mat_t
represents a matrix implemented as a dense
array of entries in a generic ring R.
In this module, the context object
ctx
always represents the coefficient ring R unless otherwise stated. Creating a context object representing a matrix space only becomes necessary when one wants to manipulate matrices using generic ring methods likegr_add
instead of the designated matrix methods likegr_mat_add
.Matrix functions generally assume that input as well as output operands have compatible shapes. Some functions return
GR_DOMAIN
for matrices with the wrong shape, but this is not always consistent.Some operations (like rank, LU factorization) generally only make sense when the base ring is an integral domain. Typically the algorithms designed for integral domains also work over non-integral domains as long as all inversions of nonzero elements succeed. If an inversion fails, the algorithm will return the
GR_DOMAIN
orGR_UNABLE
flag. This might not yet be entirely consistent.
Type compatibility¶
The gr_mat
type has the same data layout as most
Flint, Arb and Calcium matrix types.
Methods in this module can therefore be mixed freely with
methods in the corresponding Flint, Arb and Calcium modules
when the underlying coefficient type is the same.
It is not directly compatible with the nmod_mat
type,
which stores modulus data as part of the matrix object.
Types, macros and constants¶
-
type gr_mat_struct¶
-
type gr_mat_t¶
Contains a pointer to an array of coefficients (
entries
), the number of rows (r
), the number of columns (c
), and an array to pointers marking the start of each row (rows
).A
gr_mat_t
is defined as an array of length one of typegr_mat_struct
, permitting agr_mat_t
to be passed by reference.
-
GR_MAT_ENTRY(mat, i, j, sz)¶
Macro to access the entry at row i and column j of the matrix mat whose entries have size sz bytes.
-
gr_ptr gr_mat_entry_ptr(gr_mat_t mat, slong i, slong j, gr_ctx_t ctx)¶
Function returning a pointer to the entry at row i and column j of the matrix mat. The indices must be in bounds.
-
gr_mat_nrows(mat, ctx)¶
Macro accessing the number of rows of mat.
-
gr_mat_ncols(mat, ctx)¶
Macro accessing the number of columns of mat.
Memory management¶
-
void gr_mat_init(gr_mat_t mat, slong rows, slong cols, gr_ctx_t ctx)¶
Initializes mat to a matrix with the given number of rows and columns.
Window matrices¶
-
void gr_mat_window_init(gr_mat_t window, const gr_mat_t mat, slong r1, slong c1, slong r2, slong c2, gr_ctx_t ctx)¶
Initializes window to a window matrix into the submatrix of mat starting at the corner at row r1 and column c1 (inclusive) and ending at row r2 and column c2 (exclusive). The indices must be within bounds.
Input and output¶
Comparisons¶
Assignment and special values¶
-
truth_t gr_mat_is_zero(const gr_mat_t mat, gr_ctx_t ctx)¶
-
truth_t gr_mat_is_one(const gr_mat_t mat, gr_ctx_t ctx)¶
-
truth_t gr_mat_is_neg_one(const gr_mat_t mat, gr_ctx_t ctx)¶
Returns whether mat respectively is the zero matrix or the scalar matrix with 1 or -1 on the main diagonal.
-
truth_t gr_mat_is_scalar(const gr_mat_t mat, gr_ctx_t ctx)¶
Returns whether mat is a scalar matrix, being a diagonal matrix with identical elements on the main diagonal.
-
int gr_mat_one(gr_mat_t res, gr_ctx_t ctx)¶
Sets res to the scalar matrix with 1 on the main diagonal and zero elsewhere.
-
int gr_mat_set(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_set_fmpz_mat(gr_mat_t res, const fmpz_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_set_fmpq_mat(gr_mat_t res, const fmpq_mat_t mat, gr_ctx_t ctx)¶
Sets res to the value of mat.
-
int gr_mat_set_scalar(gr_mat_t res, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_mat_set_ui(gr_mat_t res, ulong c, gr_ctx_t ctx)¶
-
int gr_mat_set_si(gr_mat_t res, slong c, gr_ctx_t ctx)¶
-
int gr_mat_set_fmpz(gr_mat_t res, const fmpz_t c, gr_ctx_t ctx)¶
-
int gr_mat_set_fmpq(gr_mat_t res, const fmpq_t c, gr_ctx_t ctx)¶
Set res to the scalar matrix with c on the main diagonal and zero elsewhere.
Basic row, column and entry operations¶
-
int gr_mat_swap_rows(gr_mat_t mat, slong *perm, slong r, slong s, gr_ctx_t ctx)¶
Swaps rows
r
ands
ofmat
. Ifperm
is non-NULL
, the permutation of the rows will also be applied toperm
.
-
int gr_mat_swap_cols(gr_mat_t mat, slong *perm, slong r, slong s, gr_ctx_t ctx)¶
Swaps columns
r
ands
ofmat
. Ifperm
is non-NULL
, the permutation of the columns will also be applied toperm
.
-
int gr_mat_invert_rows(gr_mat_t mat, slong *perm, gr_ctx_t ctx)¶
Swaps rows
i
andr - i
ofmat
for0 <= i < r/2
, wherer
is the number of rows ofmat
. Ifperm
is non-NULL
, the permutation of the rows will also be applied toperm
.
-
int gr_mat_invert_cols(gr_mat_t mat, slong *perm, gr_ctx_t ctx)¶
Swaps columns
i
andc - i
ofmat
for0 <= i < c/2
, wherec
is the number of columns ofmat
. Ifperm
is non-NULL
, the permutation of the columns will also be applied toperm
.
-
truth_t gr_mat_is_empty(const gr_mat_t mat, gr_ctx_t ctx)¶
Returns whether mat is an empty matrix, having either zero rows or zero column. This predicate is always decidable (even if the underlying ring is not computable), returning
T_TRUE
orT_FALSE
.
-
truth_t gr_mat_is_square(const gr_mat_t mat, gr_ctx_t ctx)¶
Returns whether mat is a square matrix, having the same number of rows as columns (not the same thing as being a perfect square!). This predicate is always decidable (even if the underlying ring is not computable), returning
T_TRUE
orT_FALSE
.
Arithmetic¶
-
int gr_mat_mul_classical(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)¶
-
int gr_mat_mul_generic(gr_mat_t C, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
-
int gr_mat_mul(gr_mat_t res, const gr_mat_t mat1, const gr_mat_t mat2, gr_ctx_t ctx)¶
Matrix multiplication. The default function can be overloaded by specific rings; otherwise, it falls back to
gr_mat_mul_generic()
which currently only performs classical multiplication.
-
int gr_mat_add_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_mat_sub_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_mat_mul_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_mat_addmul_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_mat_submul_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_mat_div_scalar(gr_mat_t res, const gr_mat_t mat, gr_srcptr c, gr_ctx_t ctx)¶
-
int _gr_mat_gr_poly_evaluate(gr_mat_t res, gr_srcptr poly, slong len, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_gr_poly_evaluate(gr_mat_t res, const gr_poly_t poly, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the matrix obtained by evaluating the scalar polynomial poly with matrix argument mat.
Diagonal and triangular matrices¶
-
truth_t gr_mat_is_upper_triangular(const gr_mat_t mat, gr_ctx_t ctx)¶
-
truth_t gr_mat_is_lower_triangular(const gr_mat_t mat, gr_ctx_t ctx)¶
Returns whether mat is upper (respectively lower) triangular, having zeros everywhere below (respectively above) the main diagonal. The matrix need not be square.
Gaussian elimination¶
-
int gr_mat_find_nonzero_pivot_large_abs(slong *pivot_row, gr_mat_t mat, slong start_row, slong end_row, slong column, gr_ctx_t ctx)¶
-
int gr_mat_find_nonzero_pivot_generic(slong *pivot_row, gr_mat_t mat, slong start_row, slong end_row, slong column, gr_ctx_t ctx)¶
-
int gr_mat_find_nonzero_pivot(slong *pivot_row, gr_mat_t mat, slong start_row, slong end_row, slong column, gr_ctx_t ctx)¶
Attempts to find a nonzero element in column number column of the matrix mat in a row between start_row (inclusive) and end_row (exclusive). On success, sets
pivot_row
to the row index and returnsGR_SUCCESS
. If no nonzero pivot element exists, returnsGR_DOMAIN
. If no nonzero pivot element exists and zero-testing fails for some element, returns the flagGR_UNABLE
.This function may be destructive: any elements that are nontrivially zero but can be certified zero may be overwritten by exact zeros.
-
int gr_mat_lu_classical(slong *rank, slong *P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)¶
-
int gr_mat_lu_recursive(slong *rank, slong *P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)¶
-
int gr_mat_lu(slong *rank, slong *P, gr_mat_t LU, const gr_mat_t A, int rank_check, gr_ctx_t ctx)¶
Computes a generalized LU decomposition \(A = PLU\) of a given matrix A, writing the rank of A to rank.
If A is a nonsingular square matrix, LU will be set to a unit diagonal lower triangular matrix L and an upper triangular matrix U (the diagonal of L will not be stored explicitly).
If A is an arbitrary matrix of rank r, U will be in row echelon form having r nonzero rows, and L will be lower triangular but truncated to r columns, having implicit ones on the r first entries of the main diagonal. All other entries will be zero.
If a nonzero value for
rank_check
is passed, the function will abandon the output matrix in an undefined state and set the rank to 0 if A is detected to be rank-deficient. This currently only works as expected for square matrices.The algorithm can fail if it fails to certify that a pivot element is zero or nonzero, in which case the correct rank cannot be determined. It can also fail if a pivot element is not invertible. In these cases the
GR_UNABLE
and/orGR_DOMAIN
flags will be returned. On failure, the data in the output variablesrank
,P
andLU
will be meaningless.The classical version uses iterative Gaussian elimination. The recursive version uses a block recursive algorithm to take advantage of fast matrix multiplication.
Solving¶
-
int gr_mat_nonsingular_solve_tril_classical(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_tril_recursive(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_tril(gr_mat_t X, const gr_mat_t L, const gr_mat_t B, int unit, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_triu_classical(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_triu_recursive(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_triu(gr_mat_t X, const gr_mat_t U, const gr_mat_t B, int unit, gr_ctx_t ctx)¶
Solves the lower triangular system \(LX = B\) or the upper triangular system \(UX = B\), respectively. Division by the the diagonal entries must be possible; if not a division fails,
GR_DOMAIN
is returned even if the system is solvable. If unit is set, the main diagonal of L or U is taken to consist of all ones, and in that case the actual entries on the diagonal are not read at all and can contain other data.The classical versions perform the computations iteratively while the recursive versions perform the computations in a block recursive way to benefit from fast matrix multiplication. The default versions choose an algorithm automatically.
-
int gr_mat_nonsingular_solve_fflu(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_lu(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
Solves \(AX = B\). If A is not invertible, returns
GR_DOMAIN
even if the system has a solution.
-
int gr_mat_nonsingular_solve_fflu_precomp(gr_mat_t X, const slong *perm, const gr_mat_t LU, const gr_mat_t B, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_lu_precomp(gr_mat_t X, const slong *perm, const gr_mat_t LU, const gr_mat_t B, gr_ctx_t ctx)¶
Solves \(AX = B\) given a precomputed FFLU or LU factorization of A.
-
int gr_mat_nonsingular_solve_den_fflu(gr_mat_t X, gr_ptr den, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
-
int gr_mat_nonsingular_solve_den(gr_mat_t X, gr_ptr den, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
Solves \(AX = B\) over the fraction field of the present ring (assumed to be an integral domain), returning \(X\) with an implied denominator den. If A is not invertible over the fraction field, returns
GR_DOMAIN
even if the system has a solution.
-
int gr_mat_solve_field(gr_mat_t X, const gr_mat_t A, const gr_mat_t B, gr_ctx_t ctx)¶
Solves \(AX = B\) where A is not necessarily square and not necessarily invertible. Assuming that the ring is a field, a return value of
GR_DOMAIN
indicates that the system has no solution. If there are multiple solutions, an arbitrary solution is returned.
Determinant and trace¶
-
int gr_mat_det_fflu(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_det_berkowitz(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_det_lu(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_det_cofactor(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_det_generic_field(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)¶
-
int gr_mat_det_generic_integral_domain(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)¶
-
int gr_mat_det_generic(gr_ptr res, const gr_mat_t A, gr_ctx_t ctx)¶
-
int gr_mat_det(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the determinant of the square matrix mat. Various algorithms are available:
The berkowitz version uses the division-free Berkowitz algorithm performing \(O(n^4)\) operations. Since no zero tests are required, it is guaranteed to succeed if the ring arithmetic succeeds.
The cofactor version performs cofactor expansion. This is currently only supported for matrices up to size 4, and for larger matrices returns the
GR_UNABLE
flag.The lu and fflu versions use rational LU decomposition and fraction-free LU decomposition (Bareiss algorithm) respectively, requiring \(O(n^3)\) operations. These algorithms can fail if zero certification or inversion fails, in which case the
GR_UNABLE
flag is returned.The generic, generic_field and generic_integral_domain versions choose an appropriate algorithm for a generic ring depending on the availability of division.
The default method can be overloaded.
If the matrix is not square,
GR_DOMAIN
is returned.
Rank¶
-
int gr_mat_rank_fflu(slong *rank, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_rank_lu(slong *rank, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_rank(slong *rank, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the rank of mat. The default method returns
GR_DOMAIN
if the element ring is not an integral domain, in which case the usual rank is not well-defined. The fflu and lu variants currently do not check the element domain, and simply return this flag if they encounter an impossible inverse in the execution of the respective algorithms.
Row echelon form¶
-
int gr_mat_rref_lu(slong *rank, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)¶
-
int gr_mat_rref_fflu(slong *rank, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)¶
-
int gr_mat_rref(slong *rank, gr_mat_t R, const gr_mat_t A, gr_ctx_t ctx)¶
Sets R to the reduced row echelon form of A, also setting rank to its rank.
-
int gr_mat_rref_den_fflu(slong *rank, gr_mat_t R, gr_ptr den, const gr_mat_t A, gr_ctx_t ctx)¶
-
int gr_mat_rref_den(slong *rank, gr_mat_t R, gr_ptr den, const gr_mat_t A, gr_ctx_t ctx)¶
Like rref, but computes the reduced row echelon multiplied by a common (not necessarily minimal) denominator which is written to den. This can be used to compute the rref over an integral domain which is not a field.
Nullspace¶
-
int gr_mat_nullspace(gr_mat_t X, const gr_mat_t A, gr_ctx_t ctx)¶
Sets X to a basis for the (right) nullspace of A. On success, the output matrix will be resized to the correct number of columns.
The basis is not guaranteed to be presented in a canonical or minimal form.
If the ring is not a field, this is implied to compute a nullspace basis over the fraction field. The result may be meaningless if the ring is not an integral domain.
Inverse and adjugate¶
-
int gr_mat_inv(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the inverse of mat, computed by solving \(A A^{-1} = I\).
Returns
GR_DOMAIN
if it can be determined that mat is not invertible over the present ring (warning: this may not work over non-integral domains). If invertibility cannot be proved, returnsGR_UNABLE
.To compute the inverse over the fraction field, one may use
gr_mat_nonsingular_solve_den()
orgr_mat_adjugate()
.
-
int gr_mat_adjugate_charpoly(gr_mat_t adj, gr_ptr det, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_adjugate_cofactor(gr_mat_t adj, gr_ptr det, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_adjugate(gr_mat_t adj, gr_ptr det, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets adj to the adjugate matrix of mat, simultaneously setting det to the determinant of mat. We have \(\operatorname{adj}(A) A = A \operatorname{adj}(A) = \det(A) I\), and \(A^{-1} = \operatorname{adj}(A) / \det(A)\) when A is invertible.
The cofactor version uses cofactor expansion, requiring the evaluation of \(n^2\) determinants. The charpoly version computes and then evaluates the characteristic polynomial, requiring \(O(n^{1/2})\) matrix multiplications plus \(O(n^3)\) or \(O(n^4)\) operations for the characteristic polynomial itself depending on the algorithm used.
Characteristic polynomial¶
-
int _gr_mat_charpoly(gr_ptr res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly(gr_poly_t res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)¶
Computes the characteristic polynomial using a default algorithm choice. The underscore method assumes that res is a preallocated array of \(n + 1\) coefficients.
-
int _gr_mat_charpoly_berkowitz(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_berkowitz(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the characteristic polynomial of the square matrix mat, computed using the division-free Berkowitz algorithm. The number of operations is \(O(n^4)\) where n is the size of the matrix.
-
int _gr_mat_charpoly_danilevsky_inplace(gr_ptr res, gr_mat_t mat, gr_ctx_t ctx)¶
-
int _gr_mat_charpoly_danilevsky(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_danilevsky(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int _gr_mat_charpoly_gauss(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_gauss(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int _gr_mat_charpoly_householder(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_householder(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the characteristic polynomial of the square matrix mat, computed using the Danilevsky algorithm, Hessenberg reduction using Gaussian elimination, and Hessenberg reduction using Householder reflections. The number of operations of each method is \(O(n^3)\) where n is the size of the matrix. The inplace version overwrites the input matrix.
These methods require divisions and can therefore fail when the ring is not a field. They also require zero tests. The householder version also requires square roots. The flags
GR_UNABLE
orGR_DOMAIN
are returned when an impossible division or square root is encountered or when a comparison cannot be performed.
-
int _gr_mat_charpoly_faddeev(gr_ptr res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_faddeev(gr_poly_t res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int _gr_mat_charpoly_faddeev_bsgs(gr_ptr res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_faddeev_bsgs(gr_poly_t res, gr_mat_t adj, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the characteristic polynomial of the square matrix mat, computed using the Faddeev-LeVerrier algorithm. If the optional output argument adj is not NULL, it is set to the adjugate matrix, which is computed free of charge.
The bsgs version uses a baby-step giant-step strategy, also known as the Preparata-Sarwate algorithm. This reduces the complexity from \(O(n^4)\) to \(O(n^{3.5})\) operations at the cost of requiring \(n^{0.5}\) temporary matrices to be stored.
This method requires divisions by small integers and can therefore fail (returning the
GR_UNABLE
orGR_DOMAIN
flags) in finite characteristic or when the underlying ring does not implement a division algorithm.
-
int _gr_mat_charpoly_from_hessenberg(gr_ptr res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_charpoly_from_hessenberg(gr_poly_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to the characteristic polynomial of the square matrix mat, which is assumed to be in Hessenberg form (this is currently not checked).
Minimal polynomial¶
Similarity transformations¶
-
int gr_mat_apply_row_similarity(gr_mat_t M, slong r, gr_ptr d, gr_ctx_t ctx)¶
Applies an elementary similarity transform to the \(n\times n\) matrix \(M\) in-place.
If \(P\) is the \(n\times n\) identity matrix the zero entries of whose row \(r\) (\(0\)-indexed) have been replaced by \(d\), this transform is equivalent to \(M = P^{-1}MP\).
Similarity transforms preserve the determinant, characteristic polynomial and minimal polynomial.
Eigenvalues¶
-
int gr_mat_eigenvalues(gr_vec_t lambda, gr_vec_t mult, const gr_mat_t mat, int flags, gr_ctx_t ctx)¶
-
int gr_mat_eigenvalues_other(gr_vec_t lambda, gr_vec_t mult, const gr_mat_t mat, gr_ctx_t mat_ctx, int flags, gr_ctx_t ctx)¶
Finds all eigenvalues of the given matrix in the ring defined by ctx, storing the eigenvalues without duplication in lambda (a vector with elements of type
ctx
) and the corresponding multiplicities in mult (a vector with elements of typefmpz
).The interface is essentially the same as that of
gr_poly_roots()
; see its documentation for details.
-
int gr_mat_diagonalization_precomp(gr_vec_t D, gr_mat_t L, gr_mat_t R, const gr_mat_t A, const gr_vec_t eigenvalues, const gr_vec_t mult, gr_ctx_t ctx)¶
-
int gr_mat_diagonalization_generic(gr_vec_t D, gr_mat_t L, gr_mat_t R, const gr_mat_t A, int flags, gr_ctx_t ctx)¶
-
int gr_mat_diagonalization(gr_vec_t D, gr_mat_t L, gr_mat_t R, const gr_mat_t A, int flags, gr_ctx_t ctx)¶
Computes a diagonalization \(LAR = D\) given a square matrix \(A\), where \(D\) is a diagonal matrix (returned as a vector) of the eigenvalues repeated according to their multiplicities, \(L\) is a matrix of left eigenvectors, and \(R\) is a matrix of right eigenvectors, normalized such that \(L = R^{-1}\). This implies that \(A = RDL = RDR^{-1}\). Either \(L\) or \(R\) (or both) can be set to
NULL
to omit computing the respective matrix.If the matrix has entries in a field then a return flag of
GR_DOMAIN
indicates that the matrix is non-diagonalizable over this field.The precomp version requires as input a precomputed set of eigenvalues with corresponding multiplicites, which can be computed with
gr_mat_eigenvalues()
.
Hessenberg form¶
-
truth_t gr_mat_is_hessenberg(const gr_mat_t mat, gr_ctx_t ctx)¶
Returns whether mat is in upper Hessenberg form.
-
int gr_mat_hessenberg_gauss(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_hessenberg_householder(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
-
int gr_mat_hessenberg(gr_mat_t res, const gr_mat_t mat, gr_ctx_t ctx)¶
Sets res to an upper Hessenberg form of mat. The gauss version uses Gaussian elimination. The householder version uses Householder reflections.
These methods require divisions and zero testing and can therefore fail (returning
GR_UNABLE
orGR_DOMAIN
) when the ring is not a field. The householder version additionally requires complex conjugation and the ability to compute square roots.
Random matrices¶
-
int gr_mat_randtest(gr_mat_t res, flint_rand_t state, gr_ctx_t ctx)¶
Sets res to a random matrix. The distribution is nonuniform.
-
int gr_mat_randops(gr_mat_t mat, flint_rand_t state, slong count, gr_ctx_t ctx)¶
Randomises mat in-place by performing elementary row or column operations. More precisely, at most count random additions or subtractions of distinct rows and columns will be performed.
-
int gr_mat_randpermdiag(int *parity, gr_mat_t mat, flint_rand_t state, gr_ptr diag, slong n, gr_ctx_t ctx)¶
Sets mat to a random permutation of the diagonal matrix with n leading entries given by the vector
diag
. ReturnsGR_DOMAIN
if the main diagonal ofmat
does not have room for at least n entries. The parity (0 or 1) of the permutation is written toparity
.
-
int gr_mat_randrank(gr_mat_t mat, flint_rand_t state, slong rank, gr_ctx_t ctx)¶
Sets
mat
to a random sparse matrix with the given rank, having exactly as many non-zero elements as the rank. The matrix can be transformed into a dense matrix with unchanged rank by subsequently callinggr_mat_randops()
.This operation only makes sense over integral domains (currently not checked).
Special matrices¶
For the following functions, the user supplies an output matrix with the intended number of rows and columns.
-
int gr_mat_pascal(gr_mat_t res, int triangular, gr_ctx_t ctx)¶
Sets res to a Pascal matrix, whose entries are binomial coefficients. If triangular is 0, constructs a full symmetric matrix with the rows of Pascal’s triangle as successive antidiagonals. If triangular is 1, constructs the upper triangular matrix with the rows of Pascal’s triangle as columns, and if triangular is -1, constructs the lower triangular matrix with the rows of Pascal’s triangle as rows.
-
int gr_mat_stirling(gr_mat_t res, int kind, gr_ctx_t ctx)¶
Sets res to a Stirling matrix, whose entries are Stirling numbers. If kind is 0, the entries are set to the unsigned Stirling numbers of the first kind. If kind is 1, the entries are set to the signed Stirling numbers of the first kind. If kind is 2, the entries are set to the Stirling numbers of the second kind.
-
int gr_mat_hilbert(gr_mat_t res, gr_ctx_t ctx)¶
Sets res to the Hilbert matrix, which has entries \(1/(i+j+1)\) for \(i, j \ge 0\).
-
int gr_mat_hadamard(gr_mat_t res, gr_ctx_t ctx)¶
If possible, sets res to a Hadamard matrix of the provided size and returns
GR_SUCCESS
. ReturnsGR_DOMAIN
if no Hadamard matrix of the given size exists, andGR_UNABLE
if the implementation does not know how to construct a Hadamard matrix of the given size.A Hadamard matrix of size n can only exist if n is 0, 1, 2, or a multiple of 4. It is not known whether a Hadamard matrix exists for every size that is a multiple of 4. This function uses the Paley construction, which succeeds for all n of the form \(n = 2^e\) or \(n = 2^e (q + 1)\) where q is an odd prime power. Orders n for which Hadamard matrices are known to exist but for which this construction fails are 92, 116, 156, … (OEIS A046116).
Helper functions for reduction¶
-
int gr_mat_reduce_row(slong *column, gr_mat_t A, slong *P, slong *L, slong m, gr_ctx_t ctx)¶
Reduce row n of the matrix \(A\), assuming the prior rows are in Gauss form. However those rows may not be in order. The entry \(i\) of the array \(P\) is the row of \(A\) which has a pivot in the \(i\)-th column. If no such row exists, the entry of \(P\) will be \(-1\). The function sets column to the column in which the \(n\)-th row has a pivot after reduction. This will always be chosen to be the first available column for a pivot from the left. This information is also updated in \(P\). Entry \(i\) of the array \(L\) contains the number of possibly nonzero columns of \(A\) row \(i\). This speeds up reduction in the case that \(A\) is chambered on the right. Otherwise the entries of \(L\) can all be set to the number of columns of \(A\). We require the entries of \(L\) to be monotonic increasing.