gr_poly.h – dense univariate polynomials over generic rings¶
A gr_poly_t
represents a univariate polynomial \(f \in R[X]\)
implemented as a dense array of coefficients in a generic ring R.
In this module, the context object ctx
always represents the
coefficient ring R unless otherwise stated.
Creating a context object representing the polynomial ring \(R[X]\)
only becomes necessary when one
wants to manipulate polynomials using generic ring methods
like gr_add
instead of the designated polynomial
methods like gr_poly_add
.
Most functions are provided in two versions: an underscore method which operates directly on pre-allocated arrays of coefficients and generally has some restrictions (often requiring the lengths to be nonzero and not supporting aliasing of the input and output arrays), and a non-underscore method which performs automatic memory management and handles degenerate cases.
Type compatibility¶
The gr_poly
type has the same data layout as the following
polynomial types: fmpz_poly
, fq_poly
, fq_nmod_poly
,
fq_zech_poly
, arb_poly
, acb_poly
, ca_poly
.
Methods in this module can therefore be mixed freely with
methods in the corresponding Flint, Arb and Calcium modules
when the underlying coefficient type is the same.
It is not directly compatible with the following types:
fmpq_poly
(coefficients are stored with a common denominator),
nmod_poly
(modulus data is stored as part of the polynomial object).
Weak normalization¶
A gr_poly_t
is always normalised by removing leading zeros.
For rings without decidable equality (e.g. rings with inexact
representation), only coefficients that are provably zero will be
removed, and there can thus be spurious leading zeros in the
internal representation.
Methods that depend on knowing the exact degree of a polynomial
will act appropriately, typically by returning GR_UNABLE
when it is unknown whether the leading stored coefficient is nonzero.
Types, macros and constants¶
-
type gr_poly_struct¶
-
type gr_poly_t¶
Contains a pointer to an array of coefficients (
coeffs
), the used length (length
), and the allocated size of the array (alloc
).A
gr_poly_t
is defined as an array of length one of typegr_poly_struct
, permitting agr_poly_t
to be passed by reference.
Memory management¶
Basic manipulation¶
-
int gr_poly_set(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)¶
-
int gr_poly_get_fmpz_poly(gr_poly_t res, const fmpz_poly_t src, gr_ctx_t ctx)¶
-
int gr_poly_set_fmpq_poly(gr_poly_t res, const fmpq_poly_t src, gr_ctx_t ctx)¶
-
int gr_poly_set_gr_poly_other(gr_poly_t res, const gr_poly_t x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
-
int _gr_poly_reverse(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)¶
-
int gr_poly_reverse(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)¶
-
int gr_poly_zero(gr_poly_t poly, gr_ctx_t ctx)¶
-
int gr_poly_one(gr_poly_t poly, gr_ctx_t ctx)¶
-
int gr_poly_neg_one(gr_poly_t poly, gr_ctx_t ctx)¶
-
int gr_poly_gen(gr_poly_t poly, gr_ctx_t ctx)¶
-
int gr_poly_write(gr_stream_t out, const gr_poly_t poly, gr_ctx_t ctx)¶
-
int gr_poly_print(const gr_poly_t poly, gr_ctx_t ctx)¶
-
truth_t _gr_poly_equal(gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
truth_t gr_poly_equal(const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
-
truth_t gr_poly_is_zero(const gr_poly_t poly, gr_ctx_t ctx)¶
-
truth_t gr_poly_is_one(const gr_poly_t poly, gr_ctx_t ctx)¶
-
truth_t gr_poly_is_gen(const gr_poly_t poly, gr_ctx_t ctx)¶
-
int gr_poly_set_scalar(gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_poly_set_si(gr_poly_t poly, slong c, gr_ctx_t ctx)¶
-
int gr_poly_set_ui(gr_poly_t poly, slong c, gr_ctx_t ctx)¶
-
int gr_poly_set_fmpz(gr_poly_t poly, const fmpz_t c, gr_ctx_t ctx)¶
-
int gr_poly_set_fmpq(gr_poly_t poly, const fmpq_t c, gr_ctx_t ctx)¶
-
int gr_poly_set_coeff_scalar(gr_poly_t poly, slong n, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_poly_set_coeff_si(gr_poly_t poly, slong n, slong c, gr_ctx_t ctx)¶
-
int gr_poly_set_coeff_ui(gr_poly_t poly, slong n, ulong c, gr_ctx_t ctx)¶
-
int gr_poly_set_coeff_fmpz(gr_poly_t poly, slong n, const fmpz_t c, gr_ctx_t ctx)¶
-
int gr_poly_set_coeff_fmpq(gr_poly_t poly, slong n, const fmpq_t c, gr_ctx_t ctx)¶
Arithmetic¶
-
int _gr_poly_add(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
int gr_poly_add(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
-
int _gr_poly_sub(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
int gr_poly_sub(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
-
int _gr_poly_mul(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
int gr_poly_mul(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
Powering¶
-
int _gr_poly_pow_series_ui_binexp(gr_ptr res, gr_srcptr f, slong flen, ulong exp, slong len, gr_ctx_t ctx)¶
-
int gr_poly_pow_series_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong exp, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_pow_series_ui(gr_ptr res, gr_srcptr f, slong flen, ulong exp, slong len, gr_ctx_t ctx)¶
-
int gr_poly_pow_series_ui(gr_poly_t res, const gr_poly_t poly, ulong exp, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_pow_ui_binexp(gr_ptr res, gr_srcptr f, slong flen, ulong exp, gr_ctx_t ctx)¶
-
int gr_poly_pow_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong exp, gr_ctx_t ctx)¶
Shifting¶
Division¶
TODO: algorithms handle allocation for R differently
-
int _gr_poly_divrem_divconquer_preinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_divrem_divconquer(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_divrem_divconquer(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_divrem_basecase_preinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, gr_ctx_t ctx)¶
-
int _gr_poly_divrem_basecase_noinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int _gr_poly_divrem_basecase(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int gr_poly_divrem_basecase(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)¶
-
int _gr_poly_divrem(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int gr_poly_divrem(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)¶
Polynomial division with remainder.
GR_DOMAIN
is returned when B is provably zero or when encountering an impossible division in the polynomial division algorithm.The underscore methods make the following assumptions:
Q has room for
lenA - lenB + 1
coefficients.R has room for
lenA
coefficients.lenA >= lenB >= 1
.Q is not aliased with either A or B.
R is not aliased with B.
The divisor B is normalized to have nonzero leading coefficient. (The non-underscore methods check for leading coefficients that are not provably nonzero and return
GR_UNABLE
)
The
preinv
functions take a precomputed inverse of the leading coefficient as input.
-
int _gr_poly_div_newton(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int _gr_poly_divrem_newton(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int gr_poly_divrem_newton(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)¶
Power series division¶
For divide-and-conquer (including Newton-like) algorithms, cutoff has the following meaning: we use the basecase algorithm for lengths \(n < \operatorname{cutoff}\) and the divide-and-conquer algorithm for \(n \ge \operatorname{cutoff}\). Using \(\operatorname{cutoff} = n\) thus results in exactly one divide-and-conquer step with a basecase length of \(\lceil n / 2 \rceil\). One should avoid calling the Newton methods with \(n < \operatorname{cutoff}\) as this may result in much worse performance if those methods do not have a specific escape check for that case.
The newton versions uses Newton iteration, switching to a basecase algorithm when the length is smaller than the specified cutoff. Division uses the Karp-Markstein algorithm.
-
int _gr_poly_inv_series_newton(gr_ptr res, gr_srcptr A, slong Alen, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_inv_series_newton(gr_poly_t res, const gr_poly_t A, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_inv_series_basecase(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_inv_series_basecase(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_inv_series(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_inv_series(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_div_series_newton(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_div_series_newton(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_div_series_invmul(gr_ptr res, gr_srcptr B, slong Blen, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_div_series_invmul(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_div_series_basecase(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_div_series_basecase(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_div_series(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_div_series(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)¶
Square roots¶
-
int _gr_poly_sqrt_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_sqrt_series_newton(gr_poly_t res, const gr_poly_t f, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_sqrt_series_basecase(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_sqrt_series_basecase(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_sqrt_series_miller(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_sqrt_series_miller(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_sqrt_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_sqrt_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_rsqrt_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_rsqrt_series_newton(gr_poly_t res, const gr_poly_t f, slong len, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_rsqrt_series_basecase(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_rsqrt_series_basecase(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_rsqrt_series_miller(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_rsqrt_series_miller(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_rsqrt_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_rsqrt_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
Evaluation¶
-
int _gr_poly_evaluate_rectangular(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)¶
-
int gr_poly_evaluate_rectangular(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)¶
-
int _gr_poly_evaluate_horner(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)¶
-
int gr_poly_evaluate_horner(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)¶
-
int _gr_poly_evaluate(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)¶
-
int gr_poly_evaluate(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)¶
Set res to poly evaluated at x.
-
int _gr_poly_evaluate_other_horner(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
-
int gr_poly_evaluate_other_horner(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
-
int _gr_poly_evaluate_other_rectangular(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
-
int gr_poly_evaluate_other_rectangular(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
-
int _gr_poly_evaluate_other(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
-
int gr_poly_evaluate_other(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)¶
Set res to poly evaluated at x, where the coefficients of f belong to ctx while both x and res belong to x_ctx.
Multipoint evaluation and interpolation¶
-
int _gr_poly_evaluate_vec_fast_precomp(gr_ptr vs, gr_srcptr poly, slong plen, gr_ptr *tree, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_evaluate_vec_fast(gr_ptr ys, gr_srcptr poly, slong plen, gr_srcptr xs, slong n, gr_ctx_t ctx)¶
Composition¶
-
int _gr_poly_taylor_shift_horner(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_poly_taylor_shift_horner(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)¶
-
int _gr_poly_taylor_shift_divconquer(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_poly_taylor_shift_divconquer(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)¶
-
int _gr_poly_taylor_shift(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)¶
-
int gr_poly_taylor_shift(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)¶
-
int _gr_poly_compose_horner(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
int gr_poly_compose_horner(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
-
int _gr_poly_compose_divconquer(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
int gr_poly_compose_divconquer(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
-
int _gr_poly_compose(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)¶
-
int gr_poly_compose(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)¶
Derivative and integral¶
Monic polynomials¶
GCD¶
-
int _gr_poly_hgcd(slong *sgn, gr_ptr *M, slong *lenM, gr_ptr A, slong *lenA, gr_ptr B, slong *lenB, gr_srcptr a, slong lena, gr_srcptr b, slong lenb, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_gcd_hgcd(gr_ptr G, slong *_lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_gcd_hgcd(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_gcd_euclidean(gr_ptr G, slong *lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int gr_poly_gcd_euclidean(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)¶
-
int _gr_poly_gcd(gr_ptr G, slong *lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)¶
-
int gr_poly_gcd(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)¶
Polynomial GCD. Currently only useful over fields.
The underscore methods assume
lenA >= lenB >= 1
and that both A and B have nonzero leading coefficient.
Squarefree factorization¶
TODO: currently only fields of characteristic 0 are supported.
-
int gr_poly_factor_squarefree(gr_ptr c, gr_vec_t fac, gr_vec_t exp, const gr_poly_t poly, gr_ctx_t ctx)¶
Computes a squarefree factorization of poly.
The constant c is set to an element of the scalar ring. The factors in fac are set to polynomials; the user must thus initialize it to a vector of polynomials of the same type as poly (and not to the parent ctx). The exponent vector exp must be initialized to the fmpz type.
Roots¶
-
int gr_poly_roots(gr_vec_t roots, gr_vec_t mult, const gr_poly_t poly, int flags, gr_ctx_t ctx)¶
-
int gr_poly_roots_other(gr_vec_t roots, gr_vec_t mult, const gr_poly_t poly, gr_ctx_t poly_ctx, int flags, gr_ctx_t ctx)¶
Finds all roots of the given polynomial in the ring defined by ctx, storing the roots without duplication in roots (a vector with elements of type
ctx
) and the corresponding multiplicities in mult (a vector with elements of typefmpz
).If the target ring is not an algebraically closed field, then the sum of multiplicities can be smaller than the degree of the polynomial. For example, with
fmpz
coefficients, we only find integer roots. The other version of this function takes as input a polynomial with entries in a different ringpoly_ctx
. For example, we can computeqqbar
orarb
roots for a polynomial withfmpz
coefficients.Whether the roots are sorted in any particular order is ring-dependent.
We consider roots of the zero polynomial to be ill-defined and return
GR_DOMAIN
in that case.
Power series special functions¶
-
int _gr_poly_atan_series(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_atan_series(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_atanh_series(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_atanh_series(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_log_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_log_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)¶
-
int _gr_poly_exp_series_basecase(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)¶
-
int gr_poly_exp_series_basecase(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)¶
-
int _gr_poly_exp_series_basecase_mul(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)¶
-
int gr_poly_exp_series_basecase_mul(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)¶
-
int _gr_poly_exp_series_newton(gr_ptr f, gr_ptr g, gr_srcptr h, slong hlen, slong n, slong cutoff, gr_ctx_t ctx)¶
-
int gr_poly_exp_series_newton(gr_poly_t f, const gr_poly_t h, slong n, slong cutoff, gr_ctx_t ctx)¶
-
int _gr_poly_exp_series_generic(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)¶
-
int _gr_poly_exp_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)¶
-
int gr_poly_exp_series(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)¶