acb_series – power series over complex numbers¶
-
class
flint.
acb_series
(val=None, prec=None)¶ -
agm
(s, t=None)¶
-
airy
(s)¶
-
airy_ai
(s)¶
-
airy_ai_prime
(s)¶
-
airy_bi
(s)¶
-
airy_bi_prime
(s)¶
-
atan
(s)¶
-
beta_lower
(type cls, a, b, z, int regularized=0)¶
-
chi
(s)¶
-
ci
(s)¶
-
coeffs
(self)¶
-
cos
(s)¶
-
cos_pi
(s)¶
-
cot_pi
(s)¶
-
derivative
(s)¶
-
ei
(s)¶
-
elliptic_k
(s)¶
-
elliptic_p
(s, tau)¶
-
erf
(s)¶
-
erfc
(s)¶
-
erfi
(s)¶
-
exp
(s)¶
-
fresnel
(s, bool normalized=True)¶
-
fresnel_c
(s, bool normalized=True)¶
-
fresnel_s
(s, bool normalized=True)¶
-
gamma
(s)¶
-
gamma_lower
(type cls, s, z, int regularized=0)¶
-
gamma_upper
(type cls, s, z, int regularized=0)¶
-
hypgeom
(type cls, a, b, z, long n=-1, bool regularized=False)¶ Computes the generalized hypergeometric function \({}_pF_q(a;b;z)\) given lists of power series \(a\) and \(b\) and a power series \(z\).
The optional parameter n, if nonnegative, controls the number of terms to add in the hypergeometric series. This is just a tuning parameter: a rigorous error bound is computed regardless of n.
-
integral
(s)¶
-
inv
(s)¶
-
lambertw
(s, branch=0)¶
-
length
(self) → long¶
-
lgamma
(s)¶
-
li
(s, bool offset=False)¶
-
log
(s)¶
-
polylog
(type cls, s, z)¶
-
repr
(self, **kwargs)¶
-
reversion
(s)¶
-
rgamma
(s)¶
-
rising
(s, ulong n)¶
-
rsqrt
(s)¶
-
shi
(s)¶
-
si
(s)¶
-
sin
(s)¶
-
sin_cos
(s)¶
-
sin_cos_pi
(s)¶
-
sin_pi
(s)¶
-
sqrt
(s)¶
-
str
(self, **kwargs)¶
-
tan
(s)¶
-
valuation
(self)¶
-
zeta
(s, a=1, bool deflate=0)¶
-