acb_series – power series over complex numbers¶
-
class
flint.acb_series(val=None, prec=None)¶ -
agm(s, t=None)¶
-
airy(s)¶
-
airy_ai(s)¶
-
airy_ai_prime(s)¶
-
airy_bi(s)¶
-
airy_bi_prime(s)¶
-
atan(s)¶
-
beta_lower(type cls, a, b, z, int regularized=0)¶
-
chi(s)¶
-
ci(s)¶
-
coeffs(self)¶
-
cos(s)¶
-
cos_pi(s)¶
-
cot_pi(s)¶
-
derivative(s)¶
-
ei(s)¶
-
elliptic_k(s)¶
-
elliptic_p(s, tau)¶
-
erf(s)¶
-
erfc(s)¶
-
erfi(s)¶
-
exp(s)¶
-
fresnel(s, bool normalized=True)¶
-
fresnel_c(s, bool normalized=True)¶
-
fresnel_s(s, bool normalized=True)¶
-
gamma(s)¶
-
gamma_lower(type cls, s, z, int regularized=0)¶
-
gamma_upper(type cls, s, z, int regularized=0)¶
-
hypgeom(type cls, a, b, z, long n=-1, bool regularized=False)¶ Computes the generalized hypergeometric function \({}_pF_q(a;b;z)\) given lists of power series \(a\) and \(b\) and a power series \(z\).
The optional parameter n, if nonnegative, controls the number of terms to add in the hypergeometric series. This is just a tuning parameter: a rigorous error bound is computed regardless of n.
-
integral(s)¶
-
inv(s)¶
-
lambertw(s, branch=0)¶
-
length(self) → long¶
-
lgamma(s)¶
-
li(s, bool offset=False)¶
-
log(s)¶
-
polylog(type cls, s, z)¶
-
repr(self, **kwargs)¶
-
reversion(s)¶
-
rgamma(s)¶
-
rising(s, ulong n)¶
-
rsqrt(s)¶
-
shi(s)¶
-
si(s)¶
-
sin(s)¶
-
sin_cos(s)¶
-
sin_cos_pi(s)¶
-
sin_pi(s)¶
-
sqrt(s)¶
-
str(self, **kwargs)¶
-
tan(s)¶
-
valuation(self)¶
-
zeta(s, a=1, bool deflate=0)¶
-