arb_series – power series over real numbers¶
-
class
flint.
arb_series
(val=None, prec=None)¶ -
acos
(s)¶
-
airy
(s)¶
-
airy_ai
(s)¶
-
airy_ai_prime
(s)¶
-
airy_bi
(s)¶
-
airy_bi_prime
(s)¶
-
asin
(s)¶
-
atan
(s)¶
-
beta_lower
(type cls, a, b, z, int regularized=0)¶
-
chi
(s)¶
-
ci
(s)¶
-
coeffs
(self)¶
-
cos
(s)¶
-
cos_pi
(s)¶
-
cot_pi
(s)¶
-
derivative
(s)¶
-
ei
(s)¶
-
erf
(s)¶
-
erfc
(s)¶
-
erfi
(s)¶
-
exp
(s)¶
-
static
find_roots
(f, a, b, maxn=100000)¶ Isolates the roots of a given real analytic function f on the interval [a, b]. The function f takes an arb_series as input and outputs an arb_series.
This is just a test implementation; more options including support for Newton refinement will be added in a future version.
>>> for c in arb_series.find_roots(lambda x: x.sin(), -8, 8): print(c) ... (-6.96875000000000, -5.93750000000000) (-3.87500000000000, -1.81250000000000) (-0.781250000000000, 0.250000000000000) (2.18750000000000, 4.12500000000000) (6.06250000000000, 7.03125000000000) >>> for c in arb_series.find_roots(lambda x: x.riemann_siegel_z(), 0, 30): print(c) ... (14.1210937500000, 14.1796875000000) (20.9765625000000, 21.0351562500000) (24.9609375000000, 25.0195312500000)
-
fresnel
(s, bool normalized=True)¶
-
fresnel_c
(s, bool normalized=True)¶
-
fresnel_s
(s, bool normalized=True)¶
-
gamma
(s)¶
-
gamma_lower
(type cls, s, z, int regularized=0)¶
-
gamma_upper
(type cls, s, z, int regularized=0)¶
-
integral
(s)¶
-
inv
(s)¶
-
lambertw
(s, int branch=0)¶
-
length
(self) → long¶
-
lgamma
(s)¶
-
li
(s, bool offset=False)¶
-
log
(s)¶
-
repr
(self, **kwargs)¶
-
reversion
(s)¶
-
rgamma
(s)¶
-
riemann_siegel_theta
(s)¶
-
riemann_siegel_z
(s)¶
-
rising
(s, ulong n)¶
-
rsqrt
(s)¶
-
shi
(s)¶
-
si
(s)¶
-
sin
(s)¶
-
sin_cos
(s)¶
-
sin_cos_pi
(s)¶
-
sin_pi
(s)¶
-
sqrt
(s)¶
-
str
(self, **kwargs)¶
-
tan
(s)¶
-
valuation
(self)¶
-
zeta
(s, a=1, bool deflate=0)¶
-