arb_series – power series over real numbers¶
-
class
flint.arb_series(val=None, prec=None)¶ -
acos(s)¶
-
airy(s)¶
-
airy_ai(s)¶
-
airy_ai_prime(s)¶
-
airy_bi(s)¶
-
airy_bi_prime(s)¶
-
asin(s)¶
-
atan(s)¶
-
beta_lower(type cls, a, b, z, int regularized=0)¶
-
chi(s)¶
-
ci(s)¶
-
coeffs(self)¶
-
cos(s)¶
-
cos_pi(s)¶
-
cot_pi(s)¶
-
derivative(s)¶
-
ei(s)¶
-
erf(s)¶
-
erfc(s)¶
-
erfi(s)¶
-
exp(s)¶
-
static
find_roots(f, a, b, maxn=100000)¶ Isolates the roots of a given real analytic function f on the interval [a, b]. The function f takes an arb_series as input and outputs an arb_series.
This is just a test implementation; more options including support for Newton refinement will be added in a future version.
>>> for c in arb_series.find_roots(lambda x: x.sin(), -8, 8): print(c) ... (-6.96875000000000, -5.93750000000000) (-3.87500000000000, -1.81250000000000) (-0.781250000000000, 0.250000000000000) (2.18750000000000, 4.12500000000000) (6.06250000000000, 7.03125000000000) >>> for c in arb_series.find_roots(lambda x: x.riemann_siegel_z(), 0, 30): print(c) ... (14.1210937500000, 14.1796875000000) (20.9765625000000, 21.0351562500000) (24.9609375000000, 25.0195312500000)
-
fresnel(s, bool normalized=True)¶
-
fresnel_c(s, bool normalized=True)¶
-
fresnel_s(s, bool normalized=True)¶
-
gamma(s)¶
-
gamma_lower(type cls, s, z, int regularized=0)¶
-
gamma_upper(type cls, s, z, int regularized=0)¶
-
integral(s)¶
-
inv(s)¶
-
lambertw(s, int branch=0)¶
-
length(self) → long¶
-
lgamma(s)¶
-
li(s, bool offset=False)¶
-
log(s)¶
-
repr(self, **kwargs)¶
-
reversion(s)¶
-
rgamma(s)¶
-
riemann_siegel_theta(s)¶
-
riemann_siegel_z(s)¶
-
rising(s, ulong n)¶
-
rsqrt(s)¶
-
shi(s)¶
-
si(s)¶
-
sin(s)¶
-
sin_cos(s)¶
-
sin_cos_pi(s)¶
-
sin_pi(s)¶
-
sqrt(s)¶
-
str(self, **kwargs)¶
-
tan(s)¶
-
valuation(self)¶
-
zeta(s, a=1, bool deflate=0)¶
-